Wu, R., Sun, F., Zhang, W., Ren, J. & Liu, G. H. Targeting aging and age-related diseases with vaccines. Nat. Aging 4, 464–482 (2024).
Wilson, E. N. et al. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat. Neurosci. 27, 873–885 (2024).
Cagigas, M. L., Twigg, S. M. & Fontana, L. Ten tips for promoting cardiometabolic health and slowing cardiovascular aging. Eur. Heart J. 45, 1094–1097 (2024).
Trastus, L. A. & d’Adda di Fagagna, F. The complex interplay between aging and cancer. Nat. Aging 5, 350–365 (2025).
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This article proposes nine molecular cellular and systemic hallmarks of aging.
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023). This review creatively introduces the 12 signs of aging based on previous work.
Janssen, A. et al. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor–Guillermo progeria syndrome cells. Nucleic Acids Res. 50, 9260–9278 (2022).
Cohen-Berkman, M. et al. Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. eLife 9, e50896 (2020).
Zhang, Y. et al. SIRT1 regulates accumulation of oxidized LDL in HUVEC via the autophagy–lysosomal pathway. Prostaglandins Other Lipid Mediat. 122, 37–44 (2016).
Morelli, K. H. et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat. Neurosci. 26, 27–38 (2023). This study develops an RNA-targeted CRISPR–Cas13d–CAGEX to treat HD.
Ye, Z. et al. Regulation of miR-181a expression in T cell aging. Nat. Commun. 9, 3060 (2018).
Della Valle, F. et al. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14, eabl6057 (2022). This study presents the findings that L1 RNA ASO can be used to treat progeria.
Sun, Y. et al. An antisense oligonucleotide-loaded blood–brain barrier penetrable nanoparticle mediating recruitment of endogenous neural stem cells for the treatment of Parkinson’s disease. ACS Nano 17, 4414–4432 (2023).
Li, Y. et al. Transient introduction of human telomerase mRNA improves hallmarks of progeria cells. Aging Cell 18, e12979 (2019).
Xu, C. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170–1179 (2020).
Castner, S. A. et al. Longevity factor Klotho enhances cognition in aged nonhuman primates. Nat. Aging 3, 931–937 (2023).
Stankovic, S. et al. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 633, 608–614 (2024).
Reebye, V. et al. Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene 37, 3216–3228 (2018).
Sarker, D. et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 26, 3936–3946 (2020).
Andrikakou, P. et al. Enhancing SIRT1 gene expression using small activating RNAs: a novel approach for reversing metabolic syndrome. Nucleic Acid Ther. 32, 486–496 (2022).
Liu, H. et al. Let-7c increases BACE2 expression by RNAa and decreases Aβ production. Am. J. Transl. Res. 14, 899–908 (2022).
Lopez, P., Wagner, K. D., Hofman, P. & Van Obberghen, E. RNA activation of the vascular endothelial growth factor gene (VEGF) promoter by double-stranded RNA and hypoxia: role of noncoding VEGF promoter transcripts. Mol. Cell. Biol. 36, 1480–1493 (2016).
Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 3, 63 (2023).
Ramunas, J. et al. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB J. 29, 1930–1939 (2015).
Mojiri, A. et al. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur. Heart J. 42, 4352–4369 (2021).
Zhang, M. et al. Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA. Inflamm. Regen. 43, 32 (2023).
Baba, M., Itaka, K., Kondo, K., Yamasoba, T. & Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J. Control. Release 201, 41–48 (2015).
Fukushima, Y. et al. Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle. Biomaterials 270, 120681 (2021).
Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).
Zhong, H. et al. Dissecting tumor antigens and immune subtypes of glioma to develop mRNA vaccine. Front. Immunol. 12, 709986 (2021).
Barbera, M. C. et al. Increased ectodysplasin-A2-receptor EDA2R is a ubiquitous hallmark of aging and mediates parainflammatory responses. Nat. Commun. 16, 1898 (2025).
Ruetz, T. J. et al. CRISPR–Cas9 screens reveal regulators of ageing in neural stem cells. Nature 634, 1150–1159 (2024).
Wang, W. et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13, eabd2655 (2021).
Yang, L. et al. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation 13, 304 (2016).
Huang, R. et al. Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight 4, e129144 (2019).
Huang, Y., Xiao, X., Xiao, H., Hu, Z. & Tan, F. CUEDC2 ablation enhances the efficacy of mesenchymal stem cells in ameliorating cerebral ischemia/reperfusion insult. Aging 13, 4335–4356 (2021).
Sarsour, E. H. et al. Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. J. Biol. Chem. 295, 6946–6957 (2020).
Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).
Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).
Ding, Z. et al. Targeting miR-29 mitigates skeletal senescence and bolsters therapeutic potential of mesenchymal stromal cells. Cell Rep. Med. 5, 101665 (2024).
Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
Bi, Y. et al. Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells. Cell Metab. 37, 527–541 (2025).
Gong, H. et al. miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD+/SIRT inactivation. Signal Transduct. Target. Ther. 7, 66 (2022).
Noureddine, S. et al. microRNA-449a reduces growth hormone-stimulated senescent cell burden through PI3K–mTOR signaling. Proc. Natl Acad. Sci. USA 120, e2213207120 (2023).
Wagner, V. et al. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat. Biotechnol. 42, 109–118 (2024). This study identifies a group of aging-related ncRNAs.
Yan, Y. et al. Deletion of miR-126a promotes hepatic aging and inflammation in a mouse model of cholestasis. Mol. Ther. Nucleic Acids 16, 494–504 (2019).
Han, J. et al. Exosome-like nanovesicles derived from Phellinus linteus inhibit Mical2 expression through cross-kingdom regulation and inhibit ultraviolet-induced skin aging. J. Nanobiotechnology 20, 455 (2022).
Liu, Z. L. et al. Aging aggravates aortic aneurysm and dissection via miR-1204–MYLK signaling axis in mice. Nat. Commun. 15, 5985 (2024).
Yin, Z. et al. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 1196–1207 (2023).
Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).
Preußner, M. et al. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol. Med. 15, e17157 (2023).
Gnanaguru, G. et al. Targeting of miR-33 ameliorates phenotypes linked to age-related macular degeneration. Mol. Ther. 29, 2281–2293 (2021).
Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).
Hair, P., Cameron, F. & McKeage, K. Mipomersen sodium: first global approval. Drugs 73, 487–493 (2013).
Hermann, T. & Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000).
Yuhan, J. et al. Cell-specific aptamers as potential drugs in therapeutic applications: a review of current progress. J. Control. Release 346, 405–420 (2022).
Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006). This review details the first aptamer approved for human therapy, pegaptanib.
Chion, A. et al. The aptamer BT200 blocks interaction of K1405–K1408 in the VWF-A1 domain with macrophage LRP1. Blood 144, 1445–1456 (2024).
Ay, C. et al. The von Willebrand factor-binding aptamer rondaptivon pegol as a treatment for severe and nonsevere hemophilia A. Blood 141, 1147–1158 (2023).
Su, Y. et al. Study on the role of an erythrocyte membrane-coated nanotheranostic system in targeted immune regulation of Alzheimer’s disease. Adv. Sci. 10, 2301361 (2023).
Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).
Colognori, D., Trinidad, M. & Doudna, J. A. Precise transcript targeting by CRISPR–Csm complexes. Nat. Biotechnol. 41, 1256–1264 (2023).
Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).
Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).
Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).
Ali, Z., Mahas, A. & Mahfouz, M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci. 23, 374–378 (2018).
Granados-Riveron, J. T. & Aquino-Jarquin, G. CRISPR–Cas13 precision transcriptome engineering in cancer. Cancer Res. 78, 4107–4113 (2018).
Powell, J. E. et al. Targeted gene silencing in the nervous system with CRISPR–Cas13. Sci. Adv. 8, eabk2485 (2022).
Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).
Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).
Dejanovic, B., Sheng, M. & Hanson, J. E. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat. Rev. Drug Discov. 23, 23–42 (2024).
Vogel, J. W. et al. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat. Rev. Neurosci. 24, 620–639 (2023).
Ji, W. et al. Self-catalytic small interfering RNA nanocarriers for synergistic treatment of neurodegenerative diseases. Adv. Mater. 34, 2105711 (2022).
Walgrave, H. et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell 28, 1805–1821 (2021).
Li, D. et al. Aging-induced tRNAGlu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab. 36, 1059–1075 (2024).
Ralvenius, W. T. et al. Nanoparticle-mediated delivery of anti-PU.1 siRNA via localized intracisternal administration reduces neuroinflammation. Adv. Mater. 36, e2309225 (2024).
Gu, W. et al. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 8, 415–426 (2024).
Kojima, R. et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 9, 1305 (2018).
Yu, X. et al. Lipid nanoparticle delivery of chemically modified NGFR100W mRNA alleviates peripheral neuropathy. Adv. Healthc. Mater. 12, e2202127 (2023).
Lin, C. Y. et al. Messenger RNA-based therapeutics for brain diseases: an animal study for augmenting clearance of β-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles. J. Control. Release 235, 268–275 (2016).
Zhang, J. et al. Enhancing neuroprotection in mouse model of Parkinson’s disease through protein nanosystem conjugation with ApoE peptide for miR-124 delivery. ACS Appl. Mater. Interfaces 16, 8199–8212 (2024).
Yu, A. M. & Tu, M. J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol. Ther. 230, 107967 (2022).
Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol. 14, 570 (2018).
Guo, S., Zhang, M. & Huang, Y. Three ‘E’ challenges for siRNA drug development. Trends Mol. Med. 30, 13–24 (2024).
Tao, W. et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020).
Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019). This study utilizes miR-199a to treat cardiac repair after myocardial infarction in pigs.
Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).
Li, K. et al. Enhanced human adipose-derived stem cells with VEGFA and bFGF mRNA promote stable vascular regeneration and improve cardiac function following myocardial infarction. Clin. Transl. Med. 15, e70250 (2025).
Shea, S. M. et al. Dose-dependent von Willebrand factor inhibition by aptamer BB-031 correlates with thrombolysis in a microfluidic model of arterial occlusion. Pharmaceuticals 15, 1450 (2022).
Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).
Desai, A. S. et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. N. Engl. J. Med. 389, 228–238 (2023).
Walker, M. D. & Shane, E. Postmenopausal osteoporosis. N. Engl. J. Med. 389, 1979–1991 (2023).
Nicholson, W. K. et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA 333, 498–508 (2025).
Liu, J. et al. M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of bone marrow mesenchymal stem cells and osteoporosis. Aging 15, 9499–9520 (2023).
Zhao, Y. et al. Long noncoding RNA Malat1 protects against osteoporosis and bone metastasis. Nat. Commun. 15, 2384 (2024).
Jin, F. et al. A functional motif of long noncoding RNA Nron against osteoporosis. Nat. Commun. 12, 3319 (2021).
Gong, Z. et al. CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications. Nat. Commun. 14, 5242 (2023).
Zhong, D. et al. Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis. 12, 340 (2021).
Liu, J. et al. Delivery of m7G methylated Runx2 mRNA by bone-targeted lipid nanoparticle promotes osteoblastic bone formation in senile osteoporosis. Nano Today 54, 102074 (2024).
Wohlwend, M. et al. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci. Transl. Med. 13, eabc7367 (2021).
Sahu, A. et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat. Aging 1, 1148–1161 (2021). This study demonstrates that the use of extracellular vesicles to deliver KL mRNA can restore aging skeletal muscle regeneration.
Yu, Y. et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun. 13, 4241 (2022).
Wang, L. et al. Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice. Theranostics 12, 5645–5674 (2022).
Zhang, H. et al. A bimolecular modification strategy for developing long-lasting bone anabolic aptamer. Mol. Ther. Nucleic Acids 34, 102073 (2023).
Erdos, M. R. et al. A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 536–545 (2021).
You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7, 887–900 (2023). This study reports an extracellular vesicle-based delivery of COL1A1 mRNA that can be used to treat photoaging skin.
Kim, D. et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat. Commun. 10, 2811 (2019).
Liu, T., Zhao, L., Yan, D. & Wang, N. Circ_0060, 144 inhibits the occurrence and development of age-related cataract via the miR-23b-3p/HIPK3 axis. Exp. Eye Res. 222, 109179 (2022).
Tieu, V. et al. A versatile CRISPR–Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 187, 1278–1295 (2024).
Kong, N. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl Acad. Sci. USA 119, e2112696119 (2022).
Xiu, B. et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol. Cancer 18, 187 (2019).
Agnello, L. et al. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J. Exp. Clin. Cancer Res. 40, 239 (2021).
Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).
Cheng, Y. et al. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 187, 4770–4789 (2024).
Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).
Kim, E., Kim, Y. K. & Lee, S.-J. V. Emerging functions of circular RNA in aging. Trends Genet. 37, 819–829 (2021).
Min, X. et al. A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR‐24‐3p/CDK4/pRb axis. Aging Cell 21, e13529 (2022).
Liu, C.-X. & Chen, L.-L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).
Panda, A. C. et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 45, 4021–4035 (2017).
Wang, W. et al. Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy. Cell Death Dis. 12, 1069 (2021).
Lenharo, M. Move over, CRISPR: RNA-editing therapies pick up steam. Nature 626, 933–934 (2024).
Shi, Y. et al. Chemically modified platforms for better RNA therapeutics. Chem. Rev. 124, 929–1033 (2024).
Saiding, Q. et al. Nano-bio interactions in mRNA nanomedicine: challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 203, 115116 (2023).
Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2024). This article provides a comprehensive introduction to the functions and clinical applications of RNA modifications.
Mulroney, T. E. et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 625, 189–194 (2024).
Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023).
Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).
Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).
Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).
Venkatesan, N. & Kim, B. H. Peptide conjugates of oligonucleotides: synthesis and applications. Chem. Rev. 106, 3712–3761 (2006).
Debacker, A. J., Voutila, J., Catley, M., Blakey, D. & Habib, N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).
Thangamani, L. et al. GalNAc–siRNA conjugates: prospective tools on the frontier of anti-viral therapeutics. Pharmacol. Res. 173, 105864 (2021).
Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886 (2018).
Wang, X. et al. Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat. Commun. 15, 2261 (2024).
Chen, H. et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. 43, 194–203 (2025). The study develops a multi-tailed mRNA with improved stability and translation capabilities.
Gennemark, P. et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med. 13, eabe9117 (2021).
Hu, Q. et al. Anti‐hsa‐miR‐59 alleviates premature senescence associated with Hutchinson–Gilford progeria syndrome in mice. EMBO J. 42, e110937 (2023).
Johannes Wikstrom, J., Liang, J., Cao, H., Gao, S. & Gan, L. Targeting liver angiotensinogen using a GalNAc–siRNA improves cardiac remodeling in spontaneously hypertensive rats. Eur. Heart J. 44, ehad655.2830 (2023).
Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).
Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).
Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).
Back, P. I. et al. Immune implications of cholesterol-containing lipid nanoparticles. ACS Nano 18, 28480–28501 (2024).
Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20, 132–143 (2025).
Kim, J., Eygeris, Y., Ryals, R. C., Jozić, A. & Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2024).
Maurizi, A. et al. Novel hybrid silicon–lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans. Mol. Ther. Nucleic Acids 33, 925–937 (2023).
Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).
Liang, Y. et al. Biomimetic mineralized CRISPR/Cas RNA nanoparticles for efficient tumor-specific multiplex gene editing. ACS Nano 17, 15025–15043 (2023).
Horns, F. et al. Engineering RNA export for measurement and manipulation of living cells. Cell 186, 3642–3658 (2023).
Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023). This review introduces hydrogels as a new method for RNA delivery.
Metzloff, A. E. et al. Antigen presenting cell mimetic lipid nanoparticles for rapid mRNA CAR T cell cancer immunotherapy. Adv. Mater. 36, 2313226 (2024).
Madigan, V. et al. Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc. Natl Acad. Sci. USA 121, e2307812120 (2024).
Liu, F. et al. Cryo-shocked tumor cells deliver CRISPR–Cas9 for lung cancer regression by synthetic lethality. Sci. Adv. 10, eadk8264 (2024).
Gao, C. et al. Injectable immunotherapeutic hydrogel containing RNA-loaded lipid nanoparticles reshapes tumor microenvironment for pancreatic cancer therapy. Nano Lett. 22, 8801–8809 (2022).
Tang, H. et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).
Anisimova, A. S. et al. Multifaceted deregulation of gene expression and protein synthesis with age. Proc. Natl Acad. Sci. USA 117, 15581–15590 (2020).
Jin, J. & Zhong, X.-B. ASO drug Qalsody (tofersen) targets amyotrophic lateral sclerosis. Trends Pharmacol. Sci. 44, 1043–1044 (2023).
Estevez-Fraga, C., Tabrizi, S. J. & Wild, E. J. Huntington’s Disease Clinical Trials Corner: March 2024. J. Huntingtons Dis. 13, 1–14 (2024).
Warden, B. A. & Duell, P. B. Inclisiran: a novel agent for lowering apolipoprotein B-containing lipoproteins. J. Cardiovasc. Pharmacol. 78, e157–e174 (2021).
Endo, M. & Kami, M. Lepodisiran for elevated lipoprotein(a). JAMA 331, 1417 (2024).
Kovacevic, K. D. et al. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci. Rep. 11, 3092 (2021).
Povsic, T. J. et al. Use of the REG1 anticoagulation system in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the phase II RADAR-PCI study. EuroIntervention 10, 431–438 (2014).
Williams, M. A., McKay, G. J. & Chakravarthy, U. Complement inhibitors for age‐related macular degeneration. Cochrane Database Syst. Rev. 2014, CD009300 (2014).
Gragoudas, E. S., Adamis, A. P., Cunningham, E. T. Jr, Feinsod, M. & Guyer, D. R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).
Ramot, Y. et al. Preclinical safety evaluation in rats of a polymeric matrix containing an siRNA drug used as a local and prolonged delivery system for pancreatic cancer therapy. Toxicol. Pathol. 44, 856–865 (2016).
Kudlow, B. A., Kennedy, B. K. & Monnat, R. J. Jr Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat. Rev. Mol. Cell Biol. 8, 394–404 (2007).
Burtner, C. R. & Kennedy, B. K. Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578 (2010).
Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–882 (2004).
Gordon, L. B. et al. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson–Gilford progeria syndrome. Circulation 134, 114–125 (2016).
Martin, G. M. & Oshima, J. Lessons from human progeroid syndromes. Nature 408, 263–266 (2000).
Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).
Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).
Son, S. M., Park, S. J., Breusegem, S. Y., Larrieu, D. & Rubinsztein, D. C. p300 nucleocytoplasmic shuttling underlies mTORC1 hyperactivation in Hutchinson–Gilford progeria syndrome. Nat. Cell Biol. 26, 235–249 (2024).
Puttaraju, M. et al. Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 526–535 (2021).
Gray, M. D. et al. The Werner syndrome protein is a DNA helicase. Nat. Genet. 17, 100–103 (1997).
Tian, Y. et al. WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner syndrome. Nat. Commun. 13, 5456 (2022).
Wang, Y. et al. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proc. Natl Acad. Sci. USA 111, 14454–14459 (2014).
Hanawalt, P. C. DNA repair. The bases for Cockayne syndrome. Nature 405, 415–416 (2000).
Laugel, V. et al. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum. Mutat. 31, 113–126 (2010).
Xu, Y., Wu, Z., Liu, L., Liu, J. & Wang, Y. Rat model of Cockayne syndrome neurological disease. Cell Rep. 29, 800–809 (2019).
Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).
Xiao, Y. et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022).
O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).