Date

June 12, 2025

Source

Nature

Categories

Using RNA therapeutics to promote healthy aging
  • Wu, R., Sun, F., Zhang, W., Ren, J. & Liu, G. H. Targeting aging and age-related diseases with vaccines. Nat. Aging 4, 464–482 (2024).

    Article  PubMed  Google Scholar 

  • Wilson, E. N. et al. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat. Neurosci. 27, 873–885 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagigas, M. L., Twigg, S. M. & Fontana, L. Ten tips for promoting cardiometabolic health and slowing cardiovascular aging. Eur. Heart J. 45, 1094–1097 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Trastus, L. A. & d’Adda di Fagagna, F. The complex interplay between aging and cancer. Nat. Aging 5, 350–365 (2025).

    Article  PubMed  Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This article proposes nine molecular cellular and systemic hallmarks of aging.

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023). This review creatively introduces the 12 signs of aging based on previous work.

    Article  PubMed  Google Scholar 

  • Janssen, A. et al. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor–Guillermo progeria syndrome cells. Nucleic Acids Res. 50, 9260–9278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Berkman, M. et al. Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. eLife 9, e50896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. et al. SIRT1 regulates accumulation of oxidized LDL in HUVEC via the autophagy–lysosomal pathway. Prostaglandins Other Lipid Mediat. 122, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Morelli, K. H. et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat. Neurosci. 26, 27–38 (2023). This study develops an RNA-targeted CRISPR–Cas13d–CAGEX to treat HD.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Z. et al. Regulation of miR-181a expression in T cell aging. Nat. Commun. 9, 3060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Valle, F. et al. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14, eabl6057 (2022). This study presents the findings that L1 RNA ASO can be used to treat progeria.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. et al. An antisense oligonucleotide-loaded blood–brain barrier penetrable nanoparticle mediating recruitment of endogenous neural stem cells for the treatment of Parkinson’s disease. ACS Nano 17, 4414–4432 (2023).

    CAS  Google Scholar 

  • Li, Y. et al. Transient introduction of human telomerase mRNA improves hallmarks of progeria cells. Aging Cell 18, e12979 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, C. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170–1179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castner, S. A. et al. Longevity factor Klotho enhances cognition in aged nonhuman primates. Nat. Aging 3, 931–937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stankovic, S. et al. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 633, 608–614 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reebye, V. et al. Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene 37, 3216–3228 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker, D. et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 26, 3936–3946 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Andrikakou, P. et al. Enhancing SIRT1 gene expression using small activating RNAs: a novel approach for reversing metabolic syndrome. Nucleic Acid Ther. 32, 486–496 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. et al. Let-7c increases BACE2 expression by RNAa and decreases Aβ production. Am. J. Transl. Res. 14, 899–908 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, P., Wagner, K. D., Hofman, P. & Van Obberghen, E. RNA activation of the vascular endothelial growth factor gene (VEGF) promoter by double-stranded RNA and hypoxia: role of noncoding VEGF promoter transcripts. Mol. Cell. Biol. 36, 1480–1493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 3, 63 (2023).

    Article  CAS  Google Scholar 

  • Ramunas, J. et al. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB J. 29, 1930–1939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojiri, A. et al. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur. Heart J. 42, 4352–4369 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M. et al. Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA. Inflamm. Regen. 43, 32 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baba, M., Itaka, K., Kondo, K., Yamasoba, T. & Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J. Control. Release 201, 41–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Fukushima, Y. et al. Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle. Biomaterials 270, 120681 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, H. et al. Dissecting tumor antigens and immune subtypes of glioma to develop mRNA vaccine. Front. Immunol. 12, 709986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbera, M. C. et al. Increased ectodysplasin-A2-receptor EDA2R is a ubiquitous hallmark of aging and mediates parainflammatory responses. Nat. Commun. 16, 1898 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruetz, T. J. et al. CRISPR–Cas9 screens reveal regulators of ageing in neural stem cells. Nature 634, 1150–1159 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W. et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13, eabd2655 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. et al. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation 13, 304 (2016).

    Google Scholar 

  • Huang, R. et al. Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight 4, e129144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Xiao, X., Xiao, H., Hu, Z. & Tan, F. CUEDC2 ablation enhances the efficacy of mesenchymal stem cells in ameliorating cerebral ischemia/reperfusion insult. Aging 13, 4335–4356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarsour, E. H. et al. Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. J. Biol. Chem. 295, 6946–6957 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, Z. et al. Targeting miR-29 mitigates skeletal senescence and bolsters therapeutic potential of mesenchymal stromal cells. Cell Rep. Med. 5, 101665 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  PubMed  Google Scholar 

  • Bi, Y. et al. Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells. Cell Metab. 37, 527–541 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Gong, H. et al. miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD+/SIRT inactivation. Signal Transduct. Target. Ther. 7, 66 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noureddine, S. et al. microRNA-449a reduces growth hormone-stimulated senescent cell burden through PI3K–mTOR signaling. Proc. Natl Acad. Sci. USA 120, e2213207120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, V. et al. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat. Biotechnol. 42, 109–118 (2024). This study identifies a group of aging-related ncRNAs.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y. et al. Deletion of miR-126a promotes hepatic aging and inflammation in a mouse model of cholestasis. Mol. Ther. Nucleic Acids 16, 494–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J. et al. Exosome-like nanovesicles derived from Phellinus linteus inhibit Mical2 expression through cross-kingdom regulation and inhibit ultraviolet-induced skin aging. J. Nanobiotechnology 20, 455 (2022).

    CAS  Google Scholar 

  • Liu, Z. L. et al. Aging aggravates aortic aneurysm and dissection via miR-1204–MYLK signaling axis in mice. Nat. Commun. 15, 5985 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Z. et al. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 1196–1207 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preußner, M. et al. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol. Med. 15, e17157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnanaguru, G. et al. Targeting of miR-33 ameliorates phenotypes linked to age-related macular degeneration. Mol. Ther. 29, 2281–2293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Hair, P., Cameron, F. & McKeage, K. Mipomersen sodium: first global approval. Drugs 73, 487–493 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Hermann, T. & Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yuhan, J. et al. Cell-specific aptamers as potential drugs in therapeutic applications: a review of current progress. J. Control. Release 346, 405–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006). This review details the first aptamer approved for human therapy, pegaptanib.

    Article  CAS  PubMed  Google Scholar 

  • Chion, A. et al. The aptamer BT200 blocks interaction of K1405–K1408 in the VWF-A1 domain with macrophage LRP1. Blood 144, 1445–1456 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ay, C. et al. The von Willebrand factor-binding aptamer rondaptivon pegol as a treatment for severe and nonsevere hemophilia A. Blood 141, 1147–1158 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Su, Y. et al. Study on the role of an erythrocyte membrane-coated nanotheranostic system in targeted immune regulation of Alzheimer’s disease. Adv. Sci. 10, 2301361 (2023).

    Article  CAS  Google Scholar 

  • Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Colognori, D., Trinidad, M. & Doudna, J. A. Precise transcript targeting by CRISPR–Csm complexes. Nat. Biotechnol. 41, 1256–1264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, Z., Mahas, A. & Mahfouz, M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci. 23, 374–378 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Granados-Riveron, J. T. & Aquino-Jarquin, G. CRISPR–Cas13 precision transcriptome engineering in cancer. Cancer Res. 78, 4107–4113 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Powell, J. E. et al. Targeted gene silencing in the nervous system with CRISPR–Cas13. Sci. Adv. 8, eabk2485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejanovic, B., Sheng, M. & Hanson, J. E. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat. Rev. Drug Discov. 23, 23–42 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Vogel, J. W. et al. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat. Rev. Neurosci. 24, 620–639 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Ji, W. et al. Self-catalytic small interfering RNA nanocarriers for synergistic treatment of neurodegenerative diseases. Adv. Mater. 34, 2105711 (2022).

    Article  CAS  Google Scholar 

  • Walgrave, H. et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell 28, 1805–1821 (2021).

    CAS  Google Scholar 

  • Li, D. et al. Aging-induced tRNAGlu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab. 36, 1059–1075 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Ralvenius, W. T. et al. Nanoparticle-mediated delivery of anti-PU.1 siRNA via localized intracisternal administration reduces neuroinflammation. Adv. Mater. 36, e2309225 (2024).

    Article  PubMed  Google Scholar 

  • Gu, W. et al. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 8, 415–426 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Kojima, R. et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 9, 1305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, X. et al. Lipid nanoparticle delivery of chemically modified NGFR100W mRNA alleviates peripheral neuropathy. Adv. Healthc. Mater. 12, e2202127 (2023).

    Article  PubMed  Google Scholar 

  • Lin, C. Y. et al. Messenger RNA-based therapeutics for brain diseases: an animal study for augmenting clearance of β-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles. J. Control. Release 235, 268–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Enhancing neuroprotection in mouse model of Parkinson’s disease through protein nanosystem conjugation with ApoE peptide for miR-124 delivery. ACS Appl. Mater. Interfaces 16, 8199–8212 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Yu, A. M. & Tu, M. J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol. Ther. 230, 107967 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol. 14, 570 (2018).

    PubMed  Google Scholar 

  • Guo, S., Zhang, M. & Huang, Y. Three ‘E’ challenges for siRNA drug development. Trends Mol. Med. 30, 13–24 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Tao, W. et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019). This study utilizes miR-199a to treat cardiac repair after myocardial infarction in pigs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, K. et al. Enhanced human adipose-derived stem cells with VEGFA and bFGF mRNA promote stable vascular regeneration and improve cardiac function following myocardial infarction. Clin. Transl. Med. 15, e70250 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shea, S. M. et al. Dose-dependent von Willebrand factor inhibition by aptamer BB-031 correlates with thrombolysis in a microfluidic model of arterial occlusion. Pharmaceuticals 15, 1450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Desai, A. S. et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. N. Engl. J. Med. 389, 228–238 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Walker, M. D. & Shane, E. Postmenopausal osteoporosis. N. Engl. J. Med. 389, 1979–1991 (2023).

    Article  PubMed  Google Scholar 

  • Nicholson, W. K. et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA 333, 498–508 (2025).

    Article  PubMed  Google Scholar 

  • Liu, J. et al. M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of bone marrow mesenchymal stem cells and osteoporosis. Aging 15, 9499–9520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. et al. Long noncoding RNA Malat1 protects against osteoporosis and bone metastasis. Nat. Commun. 15, 2384 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, F. et al. A functional motif of long noncoding RNA Nron against osteoporosis. Nat. Commun. 12, 3319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, Z. et al. CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications. Nat. Commun. 14, 5242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, D. et al. Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis. 12, 340 (2021).

    CAS  Google Scholar 

  • Liu, J. et al. Delivery of m7G methylated Runx2 mRNA by bone-targeted lipid nanoparticle promotes osteoblastic bone formation in senile osteoporosis. Nano Today 54, 102074 (2024).

    CAS  Google Scholar 

  • Wohlwend, M. et al. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci. Transl. Med. 13, eabc7367 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sahu, A. et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat. Aging 1, 1148–1161 (2021). This study demonstrates that the use of extracellular vesicles to deliver KL mRNA can restore aging skeletal muscle regeneration.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y. et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun. 13, 4241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice. Theranostics 12, 5645–5674 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. et al. A bimolecular modification strategy for developing long-lasting bone anabolic aptamer. Mol. Ther. Nucleic Acids 34, 102073 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdos, M. R. et al. A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 536–545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7, 887–900 (2023). This study reports an extracellular vesicle-based delivery of COL1A1 mRNA that can be used to treat photoaging skin.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat. Commun. 10, 2811 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Zhao, L., Yan, D. & Wang, N. Circ_0060, 144 inhibits the occurrence and development of age-related cataract via the miR-23b-3p/HIPK3 axis. Exp. Eye Res. 222, 109179 (2022).

    CAS  Google Scholar 

  • Tieu, V. et al. A versatile CRISPR–Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 187, 1278–1295 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, N. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl Acad. Sci. USA 119, e2112696119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiu, B. et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol. Cancer 18, 187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnello, L. et al. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J. Exp. Clin. Cancer Res. 40, 239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Y. et al. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 187, 4770–4789 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kim, E., Kim, Y. K. & Lee, S.-J. V. Emerging functions of circular RNA in aging. Trends Genet. 37, 819–829 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Min, X. et al. A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR‐24‐3p/CDK4/pRb axis. Aging Cell 21, e13529 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Liu, C.-X. & Chen, L.-L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Panda, A. C. et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 45, 4021–4035 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Wang, W. et al. Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy. Cell Death Dis. 12, 1069 (2021).

    Google Scholar 

  • Lenharo, M. Move over, CRISPR: RNA-editing therapies pick up steam. Nature 626, 933–934 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y. et al. Chemically modified platforms for better RNA therapeutics. Chem. Rev. 124, 929–1033 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Saiding, Q. et al. Nano-bio interactions in mRNA nanomedicine: challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 203, 115116 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2024). This article provides a comprehensive introduction to the functions and clinical applications of RNA modifications.

    Article  CAS  PubMed  Google Scholar 

  • Mulroney, T. E. et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 625, 189–194 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatesan, N. & Kim, B. H. Peptide conjugates of oligonucleotides: synthesis and applications. Chem. Rev. 106, 3712–3761 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Debacker, A. J., Voutila, J., Catley, M., Blakey, D. & Habib, N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangamani, L. et al. GalNAc–siRNA conjugates: prospective tools on the frontier of anti-viral therapeutics. Pharmacol. Res. 173, 105864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. et al. Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat. Commun. 15, 2261 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H. et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. 43, 194–203 (2025). The study develops a multi-tailed mRNA with improved stability and translation capabilities.

    Article  CAS  PubMed  Google Scholar 

  • Gennemark, P. et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med. 13, eabe9117 (2021).

  • Hu, Q. et al. Anti‐hsa‐miR‐59 alleviates premature senescence associated with Hutchinson–Gilford progeria syndrome in mice. EMBO J. 42, e110937 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Johannes Wikstrom, J., Liang, J., Cao, H., Gao, S. & Gan, L. Targeting liver angiotensinogen using a GalNAc–siRNA improves cardiac remodeling in spontaneously hypertensive rats. Eur. Heart J. 44, ehad655.2830 (2023).

    Article  Google Scholar 

  • Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Back, P. I. et al. Immune implications of cholesterol-containing lipid nanoparticles. ACS Nano 18, 28480–28501 (2024).

    CAS  Google Scholar 

  • Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20, 132–143 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Eygeris, Y., Ryals, R. C., Jozić, A. & Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Maurizi, A. et al. Novel hybrid silicon–lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans. Mol. Ther. Nucleic Acids 33, 925–937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Y. et al. Biomimetic mineralized CRISPR/Cas RNA nanoparticles for efficient tumor-specific multiplex gene editing. ACS Nano 17, 15025–15043 (2023).

    CAS  Google Scholar 

  • Horns, F. et al. Engineering RNA export for measurement and manipulation of living cells. Cell 186, 3642–3658 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023). This review introduces hydrogels as a new method for RNA delivery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzloff, A. E. et al. Antigen presenting cell mimetic lipid nanoparticles for rapid mRNA CAR T cell cancer immunotherapy. Adv. Mater. 36, 2313226 (2024).

    Article  CAS  Google Scholar 

  • Madigan, V. et al. Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc. Natl Acad. Sci. USA 121, e2307812120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, F. et al. Cryo-shocked tumor cells deliver CRISPR–Cas9 for lung cancer regression by synthetic lethality. Sci. Adv. 10, eadk8264 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, C. et al. Injectable immunotherapeutic hydrogel containing RNA-loaded lipid nanoparticles reshapes tumor microenvironment for pancreatic cancer therapy. Nano Lett. 22, 8801–8809 (2022).

    CAS  Google Scholar 

  • Tang, H. et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Anisimova, A. S. et al. Multifaceted deregulation of gene expression and protein synthesis with age. Proc. Natl Acad. Sci. USA 117, 15581–15590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, J. & Zhong, X.-B. ASO drug Qalsody (tofersen) targets amyotrophic lateral sclerosis. Trends Pharmacol. Sci. 44, 1043–1044 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez-Fraga, C., Tabrizi, S. J. & Wild, E. J. Huntington’s Disease Clinical Trials Corner: March 2024. J. Huntingtons Dis. 13, 1–14 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Warden, B. A. & Duell, P. B. Inclisiran: a novel agent for lowering apolipoprotein B-containing lipoproteins. J. Cardiovasc. Pharmacol. 78, e157–e174 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Endo, M. & Kami, M. Lepodisiran for elevated lipoprotein(a). JAMA 331, 1417 (2024).

    Article  PubMed  Google Scholar 

  • Kovacevic, K. D. et al. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci. Rep. 11, 3092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Povsic, T. J. et al. Use of the REG1 anticoagulation system in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the phase II RADAR-PCI study. EuroIntervention 10, 431–438 (2014).

    Article  PubMed  Google Scholar 

  • Williams, M. A., McKay, G. J. & Chakravarthy, U. Complement inhibitors for age‐related macular degeneration. Cochrane Database Syst. Rev. 2014, CD009300 (2014).

  • Gragoudas, E. S., Adamis, A. P., Cunningham, E. T. Jr, Feinsod, M. & Guyer, D. R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ramot, Y. et al. Preclinical safety evaluation in rats of a polymeric matrix containing an siRNA drug used as a local and prolonged delivery system for pancreatic cancer therapy. Toxicol. Pathol. 44, 856–865 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Kudlow, B. A., Kennedy, B. K. & Monnat, R. J. Jr Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat. Rev. Mol. Cell Biol. 8, 394–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Burtner, C. R. & Kennedy, B. K. Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gordon, L. B. et al. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson–Gilford progeria syndrome. Circulation 134, 114–125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, G. M. & Oshima, J. Lessons from human progeroid syndromes. Nature 408, 263–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Son, S. M., Park, S. J., Breusegem, S. Y., Larrieu, D. & Rubinsztein, D. C. p300 nucleocytoplasmic shuttling underlies mTORC1 hyperactivation in Hutchinson–Gilford progeria syndrome. Nat. Cell Biol. 26, 235–249 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puttaraju, M. et al. Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 526–535 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, M. D. et al. The Werner syndrome protein is a DNA helicase. Nat. Genet. 17, 100–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y. et al. WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner syndrome. Nat. Commun. 13, 5456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. et al. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proc. Natl Acad. Sci. USA 111, 14454–14459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanawalt, P. C. DNA repair. The bases for Cockayne syndrome. Nature 405, 415–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Laugel, V. et al. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum. Mutat. 31, 113–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Wu, Z., Liu, L., Liu, J. & Wang, Y. Rat model of Cockayne syndrome neurological disease. Cell Rep. 29, 800–809 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Y. et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022).

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article  PubMed  PubMed Central  Google Scholar