López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
Krutmann, J. Pollution and skin: from epidemiological and mechanistic studies to clinical implications. J. Dermatol. Sci. 76, 163–168 (2014).
Fisher, G. J. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 337, 1419–1429 (1997).
Gruber, F., Kremslehner, C., Eckhart, L. & Tschachler, E. Cell aging and cellular senescence in skin aging—recent advances in fibroblast and keratinocyte biology. Exp. Gerontol. 130, 110780 (2020).
Hughes, B. K. & Bishop, C. L. Current understanding of the role of senescent melanocytes in skin ageing. Biomedicines 10, 3111 (2022).
Zhang, J., Yu, H., Man, M. & Hu, L. Aging in the dermis: fibroblast senescence and its significance. Aging Cell 23, e14054 (2024).
He, X., Gao, X. & Xie, W. Research progress in skin aging and immunity. Int. J. Mol. Sci. 25, 4101 (2024).
Lyons, C. E., Razzoli, M. & Bartolomucci, A. The impact of life stress on hallmarks of aging and accelerated senescence: connections in sickness and in health. Neurosci. Biobehav. Rev. 153, 105359 (2023).
Saini, N. UV-exposure, endogenous DNA damage, and DNA replication errors shape the spectra of genome changes in human skin. PLoS Genet. 17, e1009302 (2021).
Petr, M. A., Tulika, T., Carmona-Marin, L. M. & Scheibye-Knudsen, M. Protecting the aging genome. Trends Cell Biol. 30, 117–132 (2020).
Agrawal, R., Hu, A. & Bollag, W. B. The skin and inflamm-aging. Biology 12, 1396 (2023).
Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).
Jin, S. Hallmarks of skin aging: update. Aging Dis. 14, 2167–2176 (2023).
Hernando, B. The effect of age on the acquisition and selection of cancer driver mutations in sun-exposed normal skin. Ann. Oncol. 32, 412–421 (2021).
Wang, A. S. & Dreesen, O. Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247 (2018).
Bauwens, E. Senescence induced by UVB in keratinocytes impairs amino acids balance. J. Invest. Dermatol. 143, 554–565 (2023).
Mouret, S., Forestier, A. & Douki, T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem. Photobiol. Sci. 11, 155–162 (2012).
Inomata, K. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137, 1088–1099 (2009).
Sotiropoulou, P. A. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat. Cell Biol. 12, 572–582 (2010).
Plikus, M. V. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc. Natl Acad. Sci. USA 110, 2106–2115 (2013).
Janich, P. Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell 13, 745–753 (2013).
Solanas, G. Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell 170, 678–692 (2017).
Mortimer, T. The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis. Cell Stem Cell 31, 834–849 (2024).
Taub, A. F. & Pham, K. Stem cells in dermatology and anti-aging care of the skin. Facial Plast. Surg. Clin. North Am. 26, 425–437 (2018).
Ge, Y. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).
Matsumura, H. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).
Langton, A. K., Halai, P., Griffiths, C. E. M., Sherratt, M. J. & Watson, R. E. B. The impact of intrinsic ageing on the protein composition of the dermal-epidermal junction. Mech. Ageing Dev. 156, 14–16 (2016).
Vilas, J. M. Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell 17, e12834 (2018).
Yue, T. & Li, D. Senescent stem cell dysfunction and age-related diseases. Stem Cells Dev. 32, 581–591 (2023).
Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).
Siegl-Cachedenier, I., Flores, I., Klatt, P. & Blasco, M. A. Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. J. Cell Biol. 179, 277–290 (2007).
Blackburn, E. H. & Epel, E. S. Too toxic to ignore. Nature 490, 169–171 (2012).
Li, J. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J. Invest. Dermatol. 132, 2681–2690 (2012).
Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009).
Pilkington, S. M., Bulfone-Paus, S., Griffiths, C. E. M. & Watson, R. E. B. Inflammaging and the skin. J. Invest. Dermatol. 141, 1087–1095 (2021).
Lee, Y. I., Choi, S., Roh, W. S., Lee, J. H. & Kim, T. -G. Cellular senescence and inflammaging in the skin microenvironment. Int. J. Mol. Sci. 22, 3849 (2021).
Baechle, J. J. Chronic inflammation and the hallmarks of aging. Mol. Metab. 74, 101755 (2023).
Franceschi, C. & Campisi, J. Chronic Inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, 4–9 (2014).
Barker, J. N. Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am. J. Pathol. 139, 869–876 (1991).
Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).
Rhie, G. et al. Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J. Invest. Dermatol. 117, 1212–1217 (2001).
Rinnerthaler, M., Bischof, J., Streubel, M. K., Trost, A. & Richter, K. Oxidative stress in aging human skin. Biomolecules 5, 545–589 (2015).
Rabe, J. H., Mamelak, A. J., McElgunn, P. J. S., Morison, W. L. & Sauder, D. N. Photoaging: mechanisms and repair. J. Am. Acad. Dermatol. 55, 1–19 (2006).
Qian, H. Mechanism of action and therapeutic effects of oxidative stress and stem cell-based materials in skin aging: current evidence and future perspectives. Front. Bioeng. Biotechnol. 10, 1082403 (2023).
Hussain, M. Skin abnormalities in disorders with DNA repair defects, premature aging, and mitochondrial dysfunction. J. Invest. Dermatol. 141, 968–975 (2021).
Zhang, H. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).
Lyu, Y. & Ge, Y. Toward elucidating epigenetic and metabolic regulation of stem cell lineage plasticity in skin aging. Front. Cell Dev. Biol. 10, 903904 (2022).
Orioli, D. & Dellambra, E. Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells 7, 268 (2018).
Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182, 12–23 (2020).
Martincorena, I. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).
Katsyuba, E., Romani, M., Hofer, D. & Auwerx, J. NAD+ homeostasis in health and disease. Nat. Metab. 2, 9–31 (2020).
Oblong, J. E. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair 23, 59–63 (2014).
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
Li, T. Y. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat. Aging 1, 165–178 (2021).
Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).
Victorelli, S. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
Gorgoulis, V. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).
Low, E. How good is the evidence that cellular senescence causes skin ageing?. Ageing Res. Rev. 71, 101456 (2021).
Wallis, R., Mizen, H. & Bishop, C. L. The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mech. Ageing Dev. 189, 111263 (2020).
Victorelli, S. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 38, e101982 (2019).
Pereira, B. I. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).
Deruy, E. Level of macroautophagy drives senescent keratinocytes into cell death or neoplastic evasion. Cell Death Dis. 5, 1577 (2014).
Kim, H. S., Park, S. -Y., Moon, S. H., Lee, J. D. & Kim, S. Autophagy in human skin fibroblasts: impact of age. Int. J. Mol. Sci. 19, 2254 (2018).
Fitsiou, E., Pulido, T., Campisi, J., Alimirah, F. & Demaria, M. Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. J. Invest. Dermatol. 141, 1119–1126 (2020).
Song, S. B., Shim, W. & Hwang, E. S. Lipofuscin granule accumulation requires autophagy activation. Mol. Cells 46, 486–495 (2023).
Choi, Y. J. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget 7, 52685–52694 (2016).
Amorim, J. A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).
Böhm, M. et al. Endocrine controls of skin aging. Endocr. Rev. https://doi.org/10.1210/endrev/bnae034 (2025).
Slominski, A. T. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. 323, 1757–1776 (2022).
Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).
Zhou, Y., Hu, G. & Wang, M. C. Host and microbiota metabolic signals in aging and longevity. Nat. Chem. Biol. 17, 1027–1036 (2021).
Kong, H. H. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).
Kapoor, B., Gulati, M., Rani, P. & Gupta, R. Psoriasis: interplay between dysbiosis and host immune system. Autoimmun. Rev. 21, 103169 (2022).
Prescott, S. L. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 10, 29 (2017).
Meisel, J. S. Commensal microbiota modulate gene expression in the skin. Microbiome 6, 20 (2018).
Hu, L. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J. Invest. Dermatol. 137, 1277–1285 (2017).
Hibbert, S. A., Watson, R. E. B., Griffiths, C. E. M., Gibbs, N. K. & Sherratt, M. J. Selective proteolysis by matrix metalloproteinases of photo-oxidised dermal extracellular matrix proteins. Cell Signal. 54, 191–199 (2019).
Pomatto, L. C. D. & Davies, K. J. A. The role of declining adaptive homeostasis in ageing. J. Physiol. 595, 7275–7309 (2017).
Tsitsipatis, D. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 21, e13609 (2022).
Liang, W. Skin chronological aging drives age-related bone loss via secretion of cystatin-A. Nat. Aging 2, 906–922 (2022).
Wen, S., Elias, P. M., Wakefield, J. S., Mauro, T. M. & Man, M. The link between cutaneous inflammation and cognitive impairment. J. Eur. Acad. Dermatol. Venereol. 36, 1705–1712 (2022).
Brash, D. E. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 88, 10124–10128 (1991).
Alcolea, M. P. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat. Cell Biol. 16, 612–619 (2014).
Kim, M. Investigation of age-related changes in the skin microbiota of korean women. Microorganisms 8, 1581 (2020).
Huang, S. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).
Stacy, A. & Belkaid, Y. Microbial guardians of skin health. Science 363, 227–228 (2019).
Chng, K. R. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1, 16106 (2016).
Lunjani, N., Hlela, C. & O’Mahony, L. Microbiome and skin biology. Curr. Opin. Allergy Clin. Immunol. 19, 328–333 (2019).
Palmer, C. N. A. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).
Ascott, A. Atopic eczema and major cardiovascular outcomes: a systematic review and meta-analysis of population-based studies. J. Allergy Clin. Immunol. 143, 1821–1829 (2019).
Holm, J. G. & Thomsen, S. F. Type 2 diabetes and psoriasis: links and risks. Psoriasis 9, 1–6 (2019).
Yang, B. & Man, M. -Q. Improvement in cutaneous conditions can benefit some health conditions in the elderly. Clin. Inter. Aging 18, 2031–2040 (2023).
Kim, H. O., Kim, H. -S., Youn, J. -C., Shin, E. -C. & Park, S. Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J. Transl. Med. 9, 113 (2011).
Dokoshi, T. Skin inflammation activates intestinal stromal fibroblasts and promotes colitis. J. Clin. Invest. 131, e147614 (2021).
Dokoshi, T. Dermal injury drives a skin to gut axis that disrupts the intestinal microbiome and intestinal immune homeostasis in mice. Nat. Commun. 15, 3009 (2024).
Larson, P. J. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat. Aging 2, 941–955 (2022).
Solak, E. Ö. The relationship between the severity of coronary artery disease and skin measurement parameters. Skin Res. Technol. 27, 101–107 (2021).
Bocheva, G., Slominski, R. M. & Slominski, A. T. The impact of vitamin D on skin aging. Int. J. Mol. Sci. 22, 9097 (2021).
Blatt, N. L., Khaiboullin, T. I., Lombardi, V. C., Rizvanov, A. A. & Khaiboullina, S. F. The skin–brain connection hypothesis, bringing together CCL27-mediated T-cell activation in the skin and neural cell damage in the Adult Brain. Front. Immunol. 7, 683 (2017).
Ramaraj, J. A. & Narayan, S. Anti-aging strategies and topical delivery of biopolymer-based nanocarriers for skin cancer treatment. Curr. Aging Sci. 17, 31–48 (2023).
Nishikori, S. Resistance training rejuvenates aging skin by reducing circulating inflammatory factors and enhancing dermal extracellular matrices. Sci. Rep. 13, 10214 (2023).
Furman, D. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).
Rizwan, M. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br. J. Dermatol. 164, 154–162 (2011).
Charoenchon, N. Ultraviolet radiation‐induced degradation of dermal extracellular matrix and protection by green tea catechins: a randomized controlled trial. Clin. Exp. Dermatol. 47, 1314–1323 (2022).
Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).
Svobodova, A., Psotova, J. & Walterova, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 147, 137–145 (2003).
Ye, L. A topical emollient mitigates the progression of cognitive impairment in the elderly: a randomized, open‐label pilot trial. J. Eur. Acad. Dermatol. Venereol. 36, 1382–1388 (2022).
Barnes, R. P. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat. Struct. Mol. Biol. 29, 639–652 (2022).
Picca, A., Faitg, J., Auwerx, J., Ferrucci, L. & D’Amico, D. Mitophagy in human health, ageing and disease. Nat. Metab. 5, 2047–2061 (2023).
D’Amico, D. Impact of the natural compound urolithin A on health, disease, and aging. Trends Mol. Med. 27, 687–699 (2021).
Liu, W. et al. Urolithin A protects human dermal fibroblasts from UVA-induced photoaging through NRF2 activation and mitophagy. J. Photochem. Photobiol. B 232, 112462 (2022).
Harrington, J. S., Ryter, S. W., Plataki, M., Price, D. R. & Choi, A. M. K. Mitochondria in health, disease, and aging. Physiol. Rev. 103, 2349–2422 (2023).
Pietrocola, F. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 22, 509–516 (2015).
Dańczak‐Pazdrowska, A. Cellular senescence in skin‐related research: targeted signaling pathways and naturally occurring therapeutic agents. Aging Cell 22, e13845 (2023).
Qin, D. Rapamycin protects skin fibroblasts from ultraviolet B-induced photoaging by suppressing the production of reactive oxygen species. Cell. Physiol. Biochem. 46, 1849–1860 (2018).
Chung, C. L. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience 41, 861–869 (2019).
Mannick, J. B. Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev. 2, 250–262 (2021).
Mannick, J. B. & Lamming, D. W. Targeting the biology of aging with mTOR inhibitors. Nat. Aging 3, 642–660 (2023).
Hickson, L. J. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).
Takaya, K. & Kishi, K. Combined dasatinib and quercetin treatment contributes to skin rejuvenation through selective elimination of senescent cells in vitro and in vivo. Biogerontology 25, 691–704 (2024).
Zhang, S. & Duan, E. Fighting against skin aging. Cell Transplant. 27, 729–738 (2018).
Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).
Makrantonaki, E. & Zouboulis, C. C. Molecular mechanisms of skin aging. Ann. N. Y. Acad. Sci. 1119, 40–50 (2007).
Chen, C. -C. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, Dkk1, and Sfrp4. J. Invest. Dermatol. 134, 2086–2096 (2014).
Moqri, M. Validation of biomarkers of aging. Nat. Med. 30, 360–372 (2024).
Ressler, S. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379–389 (2006).
Prieur, A., Besnard, E., Babled, A. & Lemaitre, J. -M. p53 and p16INK4A independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat. Commun. 2, 473 (2011).
Eberhardt, K. Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model. Analyst 142, 4405–4414 (2017).
Sayed, N. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).
Brunet, A. Old and new models for the study of human ageing. Nat. Rev. Mol. Cell Biol. 21, 491–493 (2020).
Albouy, M. Skin-protective biological activities of bio-fermented Aframomum angustifolium extract by a consortium of microorganisms. Front. Pharm. 14, 1303198 (2023).
Hong, Z. -X. Bioengineered skin organoids: from development to applications. Mil. Med. Res. 10, 40 (2023).
Pitrez, P. R. et al. Cellular reprogramming as a tool to model human aging in a dish. Nat. Commun. 15, 1816 (2024).
Zou, Z. et al. A single-cell transcriptomic atlas of human skin aging. Dev. Cell 56, 383–397 (2021).
Schepps, S. et al. Skin in the game: a review of single-cell and spatial transcriptomics in dermatological research. Clin. Chem. Lab. Med. 62, 1880–1891 (2024).