McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).
Osborne, T. B., Mendel, L. B. & Ferry, E. L. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294–295 (1917).
Speakman, J. R., Mitchell, S. E. & Mazidi, M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp. Gerontol. 86, 28–38 (2016).
Loeb, J. & Northrop, J. H. Is there a temperature coefficient for the duration of life? Proc. Natl Acad. Sci. USA 2, 456–457 (1916).
Pearl, R. The Rate of Living (University of London Press, 1928).
Rubner, M. Das Problem det Lebensdaur und seiner beziehunger zum Wachstum und Ernarnhung. Oldenberg (1908).
Keil, G., Cummings, E. & de Magalhaes, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).
Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145–147 (1972).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
Arrhenius, S. A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4, 96–116 (1889).
Arrhenius, S. A. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 2, 226–248 (1889).
Lamb, M. J. Temperature and lifespan in Drosophila. Nature 220, 808–809 (1968).
Hollingsworth, M. Environmental temperature and life span in poikilotherms. Nature 218, 869–870 (1968).
Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).
Miquel, J., Lundgren, P. R., Bensch, K. G. & Atlan, H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347–370 (1976).
Clarke, J. M. & Smith, M. J. Two phases of ageing in Drosophila subobscura. J. Exp. Biol. 38, 679–684 (1961).
Bourliere, F. Methodology of the Study of Aging. Vol. 3 (eds Wolstenholme, G. E. W. & O’Connor, C. M.) (CIBA Foundation Colloquia on Aging, 1957).
Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in the annual fish, cynolebias adloffi. Nature 212, 1277–1278 (1966).
Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).
Flurkey, K., Papaconstantinou, J. & Harrison, D. E. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech. Ageing Dev. 123, 121–130 (2002).
Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).
Coschigano, K. T. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144, 3799–3810 (2003).
Hauck, S. J., Hunter, W. S., Danilovich, N., Kopchick, J. J. & Bartke, A. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp. Biol. Med. 226, 552–558 (2001).
Cintron-Colon, R. et al. Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction. Proc. Natl Acad. Sci. USA 114, 9731–9736 (2017).
Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).
Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).
Zhao, Z. et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat. Metab. 4, 320–326 (2022).
Sumbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review. J. Therm. Biol. 79, 166–189 (2019).
Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at bioRxiv https://doi.org/10.1101/2023.05.07.539748 (2023).
Lane, M. A. et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Natl Acad. Sci. USA 93, 4159–4164 (1996).
Soare, A., Cangemi, R., Omodei, D., Holloszy, J. O. & Fontana, L. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3, 374–379 (2011).
Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811 (2002).
Waalen, J. & Buxbaum, J. N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med Sci. 66, 487–492 (2011).
Conti, B. Hot news about temperature and lifespan. Nat. Metab. 4, 303–304 (2022).
Jayne, L. et al. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. Nat. Aging 5, 437–449 (2025).
John, L. M. et al. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun. Biol. 5, 946 (2022).
Bartfai, T. & Conti, B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front. Genet. 3, 184 (2012).
Guijas, C. et al. Metabolic adaptation to calorie restriction. Sci. Signal. https://doi.org/10.1126/scisignal.abb2490 (2020).
Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016).
Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).
Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).
Sanchez-Alavez, M. et al. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J. Biol. Chem. 286, 14983–14990 (2011).
Mendez, P., Wandosell, F. & Garcia-Segura, L. M. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front. Neuroendocrinol. 27, 391–403 (2006).
Koizumi, A. et al. A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mech. Ageing Dev. 92, 67–82 (1996).
Ali, S. S., Marcondes, M. C., Bajova, H., Dugan, L. L. & Conti, B. Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. J. Biol. Chem. 285, 32522–32528 (2010).
Carvalho, G. B. et al. The 4E-BP growth pathway regulates the effect of ambient temperature on Drosophila metabolism and lifespan. Proc. Natl Acad. Sci. USA 114, 9737–9742 (2017).
Conti, B. & Hansen, M. A cool way to live long. Cell 152, 671–672 (2013).
Xiao, R. et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 806–817 (2013).
Lee, H. J. et al. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat. Aging 3, 546–566 (2023).
Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).
Afonyushkin, T., Moll, I., Blasi, U. & Kaberdin, V. R. Temperature-dependent stability and translation of Escherichia coli ompA mRNA. Biochem. Biophys. Res. Commun. 311, 604–609 (2003).
Das, A. B. & Prosser, C. L. Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp. Biochem Physiol. 21, 449–467 (1967).
Farewell, A. & Neidhardt, F. C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180, 4704–4710 (1998).
Fraser, K. P. P., Peck, L. S., Clark, M. S., Clarke, A. & Hill, S. L. Life in the freezer: protein metabolism in Antarctic fish. R. Soc. Open Sci. 9, 211272 (2022).
Mathers, E. M., Houlihan, D. F., McCarthy, I. D. & LJ, B. Rates of growth and protein synthesis correlated with nucleic acid content in fry of rainbow trout, Oncorhynchus mykiss: effects of age and temperature. J. Fish. Biol. 43, 245–263 (1993).
Bai, H., Post, S., Kang, P. & Tatar, M. Drosophila longevity assurance conferred by reduced insulin receptor substrate chico partially requires d4eBP. PLoS ONE 10, e0134415 (2015).
Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).
Lee, H. J. et al. Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nat. Metab. 1, 790–810 (2019).
Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).
Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69 (2020).
Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003).
Loh, E., Righetti, F., Eichner, H., Twittenhoff, C. & Narberhaus, F. RNA thermometers in bacterial pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0012-2017 (2018).
Lindquist, J. A. & Mertens, P. R. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun. Signal. 16, 63 (2018).
Gotic, I. et al. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev. 30, 2005–2017 (2016).
Lin, J. Q. et al. HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion. EMBO J. 42, e113168 (2023).
Preussner, M. et al. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol. Med. 15, e17157 (2023).
Brandt, S. et al. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur. J. Cell Biol. 91, 464–471 (2012).
Gottesman, S. Chilled in translation: adapting to bacterial climate change. Mol. Cell 70, 193–194 (2018).
Wolffe, A. P. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16, 245–251 (1994).
Wolffe, A. P., Tafuri, S., Ranjan, M. & Familari, M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. N. Biol. 4, 290–298 (1992).
Derry, J. M., Kerns, J. A. & Francke, U. RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Hum. Mol. Genet. 4, 2307–2311 (1995).
Hu, Y. et al. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J. Cell. Physiol. 237, 3788–3802 (2022).
Williams, D. R. et al. Seasonally hibernating phenotype assessed through transcript screening. Physiol. Genomics 24, 13–22 (2005).
Chazarin, B. et al. Limited oxidative stress favors resistance to skeletal muscle atrophy in hibernating brown bears (Ursus arctos). Antioxidants https://doi.org/10.3390/antiox8090334 (2019).
Hettinger, Z. R. et al. Skeletal muscle RBM3 expression is associated with extended lifespan in Ames dwarf and calorie restricted mice. Exp. Gerontol. 146, 111214 (2021).
Ferry, A. L., Vanderklish, P. W. & Dupont-Versteegden, E. E. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3. Am. J. Physiol. Cell Physiol. 301, 392–402 (2011).
Avila-Gomez, P. et al. Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun. 2, fcaa078 (2020).
Nishiyama, H. et al. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204, 115–120 (1997).
Nishiyama, H. et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137, 899–908 (1997).
Rana, S. et al. Unraveling the intricacies of cold-inducible RNA-binding protein: a comprehensive review. Cell Stress Chaperones 29, 615–625 (2024).
Artero-Castro, A. et al. Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol. Cell. Biol. 29, 1855–1868 (2009).
Goh, G. H. et al. Diet-altered body temperature rhythms are associated with altered rhythms of clock gene expression in peripheral tissues in vivo. J. Therm. Biol. 100, 102983 (2021).
Zhang, Y. et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res. 44, 761–775 (2016).
Bhadra, M., Howell, P., Dutta, S., Heintz, C. & Mair, W. B. Alternative splicing in aging and longevity. Hum. Genet. 139, 357–369 (2020).
Ushio, A. & Eto, K. RBM3 expression is upregulated by NF-κB p65 activity, protecting cells from apoptosis, during mild hypothermia. J. Cell. Biochem. 119, 5734–5749 (2018).
Yuan, X. et al. Expression regulation of cold-inducible protein RBM3 by FAK/Src signaling for neuroprotection against rotenone under mild hypothermia. Biochem. Biophys. Res. Commun. 534, 240–247 (2021).
Chappell, S. A. & Mauro, V. P. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J. Biol. Chem. 278, 33793–33800 (2003).
Park, S. Y. et al. Collapsin response mediator protein 4 enhances the radiosensitivity of colon cancer cells through calcium‑mediated cell signaling. Oncol. Rep. https://doi.org/10.3892/or.2021.7957 (2021).
Abbink, T. E. & Berkhout, B. RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J. Virol. 82, 3090–3098 (2008).
Fujita, T. et al. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3. Sci. Rep. 7, 2295 (2017).
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
Allada, R. & Bass, J. Circadian mechanisms in medicine. N. Engl. J. Med. 384, 550–561 (2021).
Windred, D. P. et al. Personal light exposure patterns and incidence of type 2 diabetes: analysis of 13 million hours of light sensor data and 670,000 person-years of prospective observation. Lancet Reg. Health Eur. 42, 100943 (2024).
Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).
Windred, D. P. et al. Higher central circadian temperature amplitude is associated with greater metabolite rhythmicity in humans. Sci. Rep. 14, 16796 (2024).
Refinetti, R. The circadian rhythm of body temperature. Front. Biosci. 15, 564–594 (2010).
Sanchez-Alavez, M., Alboni, S. & Conti, B. Sex- and age-specific differences in core body temperature of C57BL/6 mice. Age 33, 89–99 (2011).
Czeisler, C. A. et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 340, 933–936 (1992).
Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, 1478–1487 (1998).
Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).
Cipriano, A. et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat. Aging 4, 14–26 (2024).
McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integr. Comp. Biol. 60, 1469–1480 (2020).
Jianfang, W. et al. Exploring epigenetic and genetic modulation in animal responses to thermal stress. Mol. Biotechnol. https://doi.org/10.1007/s12033-024-01126-5 (2024).
Wu, J., Zhang, W. & Li, C. Recent advances in genetic and epigenetic modulation of animal exposure to high temperature. Front. Genet. 11, 653 (2020).
Ledford, H. Human body’s ageing ‘clock’ ticks faster after heat stress. Nature 636, 534 (2024).
Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).
Saavedra, D. et al. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun. Ageing 20, 25 (2023).
Tartaglia, G. G., Pechmann, S., Dobson, C. M. & Vendruscolo, M. A relationship between mRNA expression levels and protein solubility in E. coli. J. Mol. Biol. 388, 381–389 (2009).
Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68 (1995).
Peretti, D. et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518, 236–239 (2015).
Hypothermia after Cardiac Arrest Study. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).
Galvin, I. M., Levy, R., Boyd, J. G., Day, A. G. & Wallace, M. C. Cooling for cerebral protection during brain surgery. Cochrane Database Syst. Rev. 1, CD006638 (2015).
You, J. S., Kim, J. Y. & Yenari, M. A. Therapeutic hypothermia for stroke: unique challenges at the bedside. Front. Neurol. 13, 951586 (2022).