Date

April 9, 2025

Source

Nature

Categories

Promoting health and survival through lowered body temperature
  • McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).

    Article  Google Scholar 

  • Osborne, T. B., Mendel, L. B. & Ferry, E. L. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294–295 (1917).

    Article  CAS  PubMed  Google Scholar 

  • Speakman, J. R., Mitchell, S. E. & Mazidi, M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp. Gerontol. 86, 28–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Loeb, J. & Northrop, J. H. Is there a temperature coefficient for the duration of life? Proc. Natl Acad. Sci. USA 2, 456–457 (1916).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl, R. The Rate of Living (University of London Press, 1928).

  • Rubner, M. Das Problem det Lebensdaur und seiner beziehunger zum Wachstum und Ernarnhung. Oldenberg (1908).

  • Keil, G., Cummings, E. & de Magalhaes, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed  Google Scholar 

  • Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145–147 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Arrhenius, S. A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4, 96–116 (1889).

    Article  Google Scholar 

  • Arrhenius, S. A. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 2, 226–248 (1889).

    Article  Google Scholar 

  • Lamb, M. J. Temperature and lifespan in Drosophila. Nature 220, 808–809 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth, M. Environmental temperature and life span in poikilotherms. Nature 218, 869–870 (1968).

    Article  Google Scholar 

  • Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Miquel, J., Lundgren, P. R., Bensch, K. G. & Atlan, H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347–370 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Clarke, J. M. & Smith, M. J. Two phases of ageing in Drosophila subobscura. J. Exp. Biol. 38, 679–684 (1961).

    Article  Google Scholar 

  • Bourliere, F. Methodology of the Study of Aging. Vol. 3 (eds Wolstenholme, G. E. W. & O’Connor, C. M.) (CIBA Foundation Colloquia on Aging, 1957).

  • Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in the annual fish, cynolebias adloffi. Nature 212, 1277–1278 (1966).

    Article  Google Scholar 

  • Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Flurkey, K., Papaconstantinou, J. & Harrison, D. E. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech. Ageing Dev. 123, 121–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coschigano, K. T. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144, 3799–3810 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hauck, S. J., Hunter, W. S., Danilovich, N., Kopchick, J. J. & Bartke, A. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp. Biol. Med. 226, 552–558 (2001).

    Article  CAS  Google Scholar 

  • Cintron-Colon, R. et al. Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction. Proc. Natl Acad. Sci. USA 114, 9731–9736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z. et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat. Metab. 4, 320–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Sumbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review. J. Therm. Biol. 79, 166–189 (2019).

    Article  PubMed  Google Scholar 

  • Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at bioRxiv https://doi.org/10.1101/2023.05.07.539748 (2023).

  • Lane, M. A. et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Natl Acad. Sci. USA 93, 4159–4164 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soare, A., Cangemi, R., Omodei, D., Holloszy, J. O. & Fontana, L. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3, 374–379 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Waalen, J. & Buxbaum, J. N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med Sci. 66, 487–492 (2011).

    Article  PubMed  Google Scholar 

  • Conti, B. Hot news about temperature and lifespan. Nat. Metab. 4, 303–304 (2022).

    Article  PubMed  Google Scholar 

  • Jayne, L. et al. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. Nat. Aging 5, 437–449 (2025).

  • John, L. M. et al. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun. Biol. 5, 946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartfai, T. & Conti, B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front. Genet. 3, 184 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guijas, C. et al. Metabolic adaptation to calorie restriction. Sci. Signal. https://doi.org/10.1126/scisignal.abb2490 (2020).

  • Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Alavez, M. et al. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J. Biol. Chem. 286, 14983–14990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez, P., Wandosell, F. & Garcia-Segura, L. M. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front. Neuroendocrinol. 27, 391–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Koizumi, A. et al. A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mech. Ageing Dev. 92, 67–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ali, S. S., Marcondes, M. C., Bajova, H., Dugan, L. L. & Conti, B. Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. J. Biol. Chem. 285, 32522–32528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, G. B. et al. The 4E-BP growth pathway regulates the effect of ambient temperature on Drosophila metabolism and lifespan. Proc. Natl Acad. Sci. USA 114, 9737–9742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti, B. & Hansen, M. A cool way to live long. Cell 152, 671–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, R. et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 806–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H. J. et al. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat. Aging 3, 546–566 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Afonyushkin, T., Moll, I., Blasi, U. & Kaberdin, V. R. Temperature-dependent stability and translation of Escherichia coli ompA mRNA. Biochem. Biophys. Res. Commun. 311, 604–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Das, A. B. & Prosser, C. L. Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp. Biochem Physiol. 21, 449–467 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Farewell, A. & Neidhardt, F. C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180, 4704–4710 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, K. P. P., Peck, L. S., Clark, M. S., Clarke, A. & Hill, S. L. Life in the freezer: protein metabolism in Antarctic fish. R. Soc. Open Sci. 9, 211272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathers, E. M., Houlihan, D. F., McCarthy, I. D. & LJ, B. Rates of growth and protein synthesis correlated with nucleic acid content in fry of rainbow trout, Oncorhynchus mykiss: effects of age and temperature. J. Fish. Biol. 43, 245–263 (1993).

    Article  CAS  Google Scholar 

  • Bai, H., Post, S., Kang, P. & Tatar, M. Drosophila longevity assurance conferred by reduced insulin receptor substrate chico partially requires d4eBP. PLoS ONE 10, e0134415 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H. J. et al. Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nat. Metab. 1, 790–810 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    Article  PubMed  Google Scholar 

  • Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Loh, E., Righetti, F., Eichner, H., Twittenhoff, C. & Narberhaus, F. RNA thermometers in bacterial pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0012-2017 (2018).

  • Lindquist, J. A. & Mertens, P. R. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun. Signal. 16, 63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotic, I. et al. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev. 30, 2005–2017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J. Q. et al. HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion. EMBO J. 42, e113168 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preussner, M. et al. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol. Med. 15, e17157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt, S. et al. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur. J. Cell Biol. 91, 464–471 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, S. Chilled in translation: adapting to bacterial climate change. Mol. Cell 70, 193–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Wolffe, A. P. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16, 245–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Wolffe, A. P., Tafuri, S., Ranjan, M. & Familari, M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. N. Biol. 4, 290–298 (1992).

    CAS  Google Scholar 

  • Derry, J. M., Kerns, J. A. & Francke, U. RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Hum. Mol. Genet. 4, 2307–2311 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y. et al. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J. Cell. Physiol. 237, 3788–3802 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Williams, D. R. et al. Seasonally hibernating phenotype assessed through transcript screening. Physiol. Genomics 24, 13–22 (2005).

    Article  PubMed  Google Scholar 

  • Chazarin, B. et al. Limited oxidative stress favors resistance to skeletal muscle atrophy in hibernating brown bears (Ursus arctos). Antioxidants https://doi.org/10.3390/antiox8090334 (2019).

  • Hettinger, Z. R. et al. Skeletal muscle RBM3 expression is associated with extended lifespan in Ames dwarf and calorie restricted mice. Exp. Gerontol. 146, 111214 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ferry, A. L., Vanderklish, P. W. & Dupont-Versteegden, E. E. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3. Am. J. Physiol. Cell Physiol. 301, 392–402 (2011).

    Article  Google Scholar 

  • Avila-Gomez, P. et al. Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun. 2, fcaa078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishiyama, H. et al. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204, 115–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, H. et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137, 899–908 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana, S. et al. Unraveling the intricacies of cold-inducible RNA-binding protein: a comprehensive review. Cell Stress Chaperones 29, 615–625 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artero-Castro, A. et al. Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol. Cell. Biol. 29, 1855–1868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh, G. H. et al. Diet-altered body temperature rhythms are associated with altered rhythms of clock gene expression in peripheral tissues in vivo. J. Therm. Biol. 100, 102983 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res. 44, 761–775 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bhadra, M., Howell, P., Dutta, S., Heintz, C. & Mair, W. B. Alternative splicing in aging and longevity. Hum. Genet. 139, 357–369 (2020).

    Article  PubMed  Google Scholar 

  • Ushio, A. & Eto, K. RBM3 expression is upregulated by NF-κB p65 activity, protecting cells from apoptosis, during mild hypothermia. J. Cell. Biochem. 119, 5734–5749 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, X. et al. Expression regulation of cold-inducible protein RBM3 by FAK/Src signaling for neuroprotection against rotenone under mild hypothermia. Biochem. Biophys. Res. Commun. 534, 240–247 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Chappell, S. A. & Mauro, V. P. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J. Biol. Chem. 278, 33793–33800 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Park, S. Y. et al. Collapsin response mediator protein 4 enhances the radiosensitivity of colon cancer cells through calcium‑mediated cell signaling. Oncol. Rep. https://doi.org/10.3892/or.2021.7957 (2021).

  • Abbink, T. E. & Berkhout, B. RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J. Virol. 82, 3090–3098 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Fujita, T. et al. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3. Sci. Rep. 7, 2295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Allada, R. & Bass, J. Circadian mechanisms in medicine. N. Engl. J. Med. 384, 550–561 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windred, D. P. et al. Personal light exposure patterns and incidence of type 2 diabetes: analysis of 13 million hours of light sensor data and 670,000 person-years of prospective observation. Lancet Reg. Health Eur. 42, 100943 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windred, D. P. et al. Higher central circadian temperature amplitude is associated with greater metabolite rhythmicity in humans. Sci. Rep. 14, 16796 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Refinetti, R. The circadian rhythm of body temperature. Front. Biosci. 15, 564–594 (2010).

    Article  Google Scholar 

  • Sanchez-Alavez, M., Alboni, S. & Conti, B. Sex- and age-specific differences in core body temperature of C57BL/6 mice. Age 33, 89–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Czeisler, C. A. et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 340, 933–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, 1478–1487 (1998).

    Google Scholar 

  • Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipriano, A. et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat. Aging 4, 14–26 (2024).

    Article  PubMed  Google Scholar 

  • McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integr. Comp. Biol. 60, 1469–1480 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Jianfang, W. et al. Exploring epigenetic and genetic modulation in animal responses to thermal stress. Mol. Biotechnol. https://doi.org/10.1007/s12033-024-01126-5 (2024).

    Article  PubMed  Google Scholar 

  • Wu, J., Zhang, W. & Li, C. Recent advances in genetic and epigenetic modulation of animal exposure to high temperature. Front. Genet. 11, 653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledford, H. Human body’s ageing ‘clock’ ticks faster after heat stress. Nature 636, 534 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Saavedra, D. et al. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun. Ageing 20, 25 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tartaglia, G. G., Pechmann, S., Dobson, C. M. & Vendruscolo, M. A relationship between mRNA expression levels and protein solubility in E. coli. J. Mol. Biol. 388, 381–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Peretti, D. et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518, 236–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hypothermia after Cardiac Arrest Study. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).

    Article  Google Scholar 

  • Galvin, I. M., Levy, R., Boyd, J. G., Day, A. G. & Wallace, M. C. Cooling for cerebral protection during brain surgery. Cochrane Database Syst. Rev. 1, CD006638 (2015).

    PubMed  Google Scholar 

  • You, J. S., Kim, J. Y. & Yenari, M. A. Therapeutic hypothermia for stroke: unique challenges at the bedside. Front. Neurol. 13, 951586 (2022).

    Article  PubMed  PubMed Central  Google Scholar