Date

June 23, 2025

Source

Nature

Categories

Adipose tissue ageing: implications for metabolic health and lifespan
  • Vaupel, J. W. Biodemography of human ageing. Nature 464, 536–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ou, M. Y., Zhang, H., Tan, P. C., Zhou, S. B. & Li, Q. F. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 13, 300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T. T. & Corvera, S. Adipose tissue as a linchpin of organismal ageing. Nat. Metab. 6, 793–807 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Q. et al. A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 31, 107694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).

    Article  PubMed  Google Scholar 

  • Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger, C. & Kajimura, S. Adipose tissue remodeling in pathophysiology. Annu. Rev. Pathol. 18, 71–93 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Kuk, J. L., Saunders, T. J., Davidson, L. E. & Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 8, 339–348 (2009).

    Article  PubMed  Google Scholar 

  • Cero, C. et al. beta3-adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 6, e139160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Darcy, J. & Tseng, Y. H. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience 41, 285–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, R. S. et al. Body fat distribution in healthy young and older men. J. Gerontol. 45, M181–M185 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Baarts, R. B. et al. Age- and sex-specific changes in visceral fat mass throughout the life-span. Obesity 31, 1953–1961 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. C. et al. Life-course trajectories of body mass index from adolescence to old age: racial and educational disparities. Proc. Natl Acad. Sci. USA 118, e2020167118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott, J. W. et al. Relation between body fat and age in 4 ethnic groups. Am. J. Clin. Nutr. 69, 1007–1013 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ding, J. et al. Effects of birth cohort and age on body composition in a sample of community-based elderly. Am. J. Clin. Nutr. 85, 405–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Reinders, I., Visser, M. & Schaap, L. Body weight and body composition in old age and their relationship with frailty. Curr. Opin. Clin. Nutr. Metab. Care 20, 11–15 (2017).

    Article  PubMed  Google Scholar 

  • Zhang, Z. et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J. Clin. Invest. 129, 5327–5342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezure, T., Amano, S. & Matsuzaki, K. Infiltration of subcutaneous adipose layer into the dermal layer with aging. Skin Res. Technol. 28, 311–316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofenheimer, A. et al. Reference values of body composition parameters and visceral adipose tissue (VAT) by DXA in adults aged 18-81 years-results from the LEAD cohort. Eur. J. Clin. Nutr. 74, 1181–1191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justesen, J. et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2, 165–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zamboni, M. et al. Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clin. Exp. Res. 15, 321–327 (2003).

    Article  PubMed  Google Scholar 

  • Kuhn, J. P. et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 276, 129–136 (2015).

    Article  PubMed  Google Scholar 

  • Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Ye, R. et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration. eLife 3, e03851 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu, J. et al. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration. Diabetes 70, 1303–1316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coimbra, S., Brandao Proenca, J., Santos-Silva, A. & Neuparth, M. J. Adiponectin, leptin, and chemerin in elderly patients with type 2 diabetes mellitus: a close linkage with obesity and length of the disease. Biomed. Res. Int. 2014, 701915 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Atzmon, G. et al. Adiponectin levels and genotype: a potential regulator of life span in humans. J. Gerontol. A Biol. Sci. Med. Sci. 63, 447–453 (2008).

    Article  PubMed  Google Scholar 

  • Hotta, K. et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 1126–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Li, N. et al. Adiponectin preserves metabolic fitness during aging. eLife 10, e65108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland, W. L. et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267–275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederich, R. C. et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J. Clin. Invest. 96, 1658–1663 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman, J. M. Leptin and the regulation of body weight. Keio J. Med. 60, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ma, X. H. et al. Aging is associated with resistance to effects of leptin on fat distribution and insulin action. J. Gerontol. A Biol. Sci. Med. Sci. 57, B225–B231 (2002).

    Article  PubMed  Google Scholar 

  • Zhao, S. et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 30, 706–719.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gencer, B. et al. Association between resistin levels and cardiovascular disease events in older adults: the health, aging and body composition study. Atherosclerosis 245, 181–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Acquarone, E., Monacelli, F., Borghi, R., Nencioni, A. & Odetti, P. Resistin: a reappraisal. Mech. Ageing Dev. 178, 46–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Bozaoglu, K. et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148, 4687–4694 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y. et al. The chemerin-CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL-33/type 2 innate immunity circuit. Sci. Immunol. 6, eabg9698 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Hart, R. & Greaves, D. R. Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 185, 3728–3739 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Parolini, S. et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625–3632 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Jaworski, K., Sarkadi-Nagy, E., Duncan, R. E., Ahmadian, M. & Sul, H. S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1–G4 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Li, E. et al. Control of lipolysis by a population of oxytocinergic sympathetic neurons. Nature 625, 175–180 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Palmer, A. K. & Jensen, M. D. Metabolic changes in aging humans: current evidence and therapeutic strategies. J. Clin. Invest. 132, e158451 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, H. et al. Age-induced reduction in human lipolysis: a potential role for adipocyte noradrenaline degradation. Cell Metab. 32, 1–3 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Lonnqvist, F., Nyberg, B., Wahrenberg, H. & Arner, P. Catecholamine-induced lipolysis in adipose tissue of the elderly. J. Clin. Invest. 85, 1614–1621 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markussen, L. K. et al. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat. Commun. 13, 3956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Exp. Dermatol. 30, 102–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807.e5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Scherer, P. E. et al. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 127, 1233–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Fazakerley, D. J., Krycer, J. R., Kearney, A. L., Hocking, S. L. & James, D. E. Muscle and adipose tissue insulin resistance: malady without mechanism? J. Lipid Res. 60, 1720–1732 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Halberg, N. et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 29, 4467–4483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. et al. Aging is associated with hypoxia and oxidative stress in adipose tissue: implications for adipose function. Am. J. Physiol. Endocrinol. Metab. 301, E599–E607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1alpha ameliorates adipose tissue dysfunction. Mol. Cell Biol. 33, 904–917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, K. N. et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 16, 497–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laforest, S., Labrecque, J., Michaud, A., Cianflone, K. & Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Weyer, C., Foley, J. E., Bogardus, C., Tataranni, P. A. & Pratley, R. E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43, 1498–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Bluher, M. et al. Role of insulin action and cell size on protein expression patterns in adipocytes. J. Biol. Chem. 279, 31902–31909 (2004).

    Article  PubMed  Google Scholar 

  • Skurk, T., Alberti-Huber, C., Herder, C. & Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Acosta, J. R. et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59, 560–570 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Rajbhandari, P. et al. Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 8, e49501 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarvari, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33, 1869–1882.e6 (2021).

    Article  PubMed  Google Scholar 

  • Xie, L. et al. Single-nucleus RNA sequencing reveals heterogeneity among multiple white adipose tissue depots. Life Metab. 2, load045 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Holman, C. D. et al. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 12, RP87756 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hepler, C., Vishvanath, L. & Gupta, R. K. Sorting out adipocyte precursors and their role in physiology and disease. Genes Dev. 31, 127–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Burl, R. B. et al. Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero, R., Rainer, P. & Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 30, 937–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Loft, A. et al. Towards a consensus atlas of human and mouse adipose tissue at single-cell resolution. Nat. Metab. 7, 875–894 (2025).

    Article  PubMed  Google Scholar 

  • Hepler, C. et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7, e39636 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, H. P. et al. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev. Cell 56, 1437–1451.e3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani, K. et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int. J. Obes. Relat. Metab. Disord. 18, 207–202 (1994).

    CAS  PubMed  Google Scholar 

  • Kirkland, J. L. & Dobson, D. E. Preadipocyte function and aging: links between age-related changes in cell dynamics and altered fat tissue function. J. Am. Geriatr. Soc. 45, 959–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokai, L. E. et al. Adipose stem cell function maintained with age: an intra-subject study of long-term cryopreserved cells. Aesthet. Surg. J. 37, 454–463 (2017).

    PubMed  Google Scholar 

  • Wang, G. et al. Distinct adipose progenitor cells emerging with age drive active adipogenesis. Science 388, eadj0430 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Jacks, R. D. & Lumeng, C. N. Macrophage and T cell networks in adipose tissue. Nat. Rev. Endocrinol. 20, 50–61 (2024).

    Article  PubMed  Google Scholar 

  • Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlquist, K. J. V. & Camell, C. D. Aging leukocytes and the inflammatory microenvironment of the adipose tissue. Diabetes 71, 23–30 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey, A. et al. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep. 43, 113967 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. A panoramic view of cell population dynamics in mammalian aging. Science 387, eadn3949 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno, M. E. C. et al. Accumulation of gammadelta T cells in visceral fat with aging promotes chronic inflammation. Geroscience 44, 1761–1778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, E. L. et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. 33, 2277–2287.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, B. et al. Cold-responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual. Genes Dev. 35, 1333–1338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlakoiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4, eaax0416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyda, M. et al. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int. J. Obes. 37, 658–665 (2013).

    Article  CAS  Google Scholar 

  • Spallanzani, R. G. et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. 4, eaaw3658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. et al. Insulin signaling establishes a developmental trajectory of adipose regulatory T cells. Nat. Immunol. 22, 1175–1185 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrocelli, J. J. et al. Disuse-induced muscle fibrosis, cellular senescence, and senescence-associated secretory phenotype in older adults are alleviated during re-ambulation with metformin pre-treatment. Aging Cell 22, e13936 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Pelletier, L. et al. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. eLife 10, e62635 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962–973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z. et al. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity 57, 513–527 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Han, H. S. et al. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. Nat. Aging 3, 982–1000 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasek, N. S., Kuchel, G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. et al. Cellular senescence: a key therapeutic target in aging and diseases. J. Clin. Investig. 132, e158450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y. et al. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. eBioMedicine 77, 103912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y. et al. PPARγ acetylation in adipocytes exacerbates BAT whitening and worsens age-associated metabolic dysfunction. Cells 12, 1424 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaoka, T. et al. Near-infrared time-resolved spectroscopy for assessing brown adipose tissue density in humans: a review. Front. Endocrinol. 11, 261 (2020).

    Article  Google Scholar 

  • Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, K., Maretich, P. & Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29, 191–200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess, A. M. et al. Emerging debates and resolutions in brown adipose tissue research. Cell Metab. 37, 12–33 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 693 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramarova, T. V. et al. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J. 22, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess, A. M. et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 32, 287–300.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Rahbani, J. F. et al. ADRA1A-Gα(q) signalling potentiates adipocyte thermogenesis through CKB and TNAP. Nat. Metab. 4, 1459–1473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. et al. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593, 580–585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazak, L. et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat. Metab. 1, 360–370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunk, J. et al. The futile creatine cycle powers UCP1-independent thermogenesis in classical BAT. Nat. Commun. 16, 3221 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, P. et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab. 23, 602–609 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Yoneshiro, T. et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572, 614–619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir, G. et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 27, 1348–1355.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. et al. Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep. 21, e50085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286, 12983–12990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, X. et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 28, 631–643.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, S. et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat. Metab. 4, 775–790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, K. et al. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nat. Metab. 1, 886–898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahler, L. et al. Differences in sympathetic nervous stimulation of brown adipose tissue between the young and old, and the lean and obese. J. Nucl. Med. 57, 372–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Silva, G. D. N. & Amato, A. A. Thermogenic adipose tissue aging: mechanisms and implications. Front. Cell Dev. Biol. 10, 955612 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoneshiro, T. et al. Impact of UCP1 and beta3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans. Int. J. Obes. 37, 993–998 (2013).

    Article  CAS  Google Scholar 

  • Feng, X. et al. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat. Commun. 14, 3208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, A. et al. Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J. Clin. Invest. 130, 247–257 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sun, W., Modica, S., Dong, H. & Wolfrum, C. Plasticity and heterogeneity of thermogenic adipose tissue. Nat. Metab. 3, 751–761 (2021).

    Article  PubMed  Google Scholar 

  • Lee, Y. H., Petkova, A. P., Konkar, A. A. & Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Shamsi, F. et al. Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes. Nat. Metab. 3, 485–495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabaldon, A. M., Florez-Duquet, M. L., Hamilton, J. S., McDonald, R. B. & Horwitz, B. A. Effects of age and gender on brown fat and skeletal muscle metabolic responses to cold in F344 rats. Am. J. Physiol. 268, R931–R941 (1995).

    CAS  PubMed  Google Scholar 

  • Huang, Z. et al. Brown adipose tissue involution associated with progressive restriction in progenitor competence. Cell Rep. 39, 110575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X. X. et al. Senescent T cell induces brown adipose tissue “whitening” via secreting IFN-γ. Front. Cell Dev. Biol. 9, 637424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Berry, D. C. & Graff, J. M. Distinct cellular and molecular mechanisms for beta3 adrenergic receptor-induced beige adipocyte formation. eLife 6, e30329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rui, L. Brown and beige adipose tissues in health and disease. Compr. Physiol. 7, 1281–1306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, X., Xu, L., Gavrilova, O. & Mueller, E. Role of forkhead box protein A3 in age-associated metabolic decline. Proc. Natl Acad. Sci. USA 111, 14289–14294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W. et al. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab. 30, 174–189.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q. et al. Post-translational control of beige fat biogenesis by PRDM16 stabilization. Nature 609, 151–158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duteil, D. et al. Lsd1 prevents age-programed loss of beige adipocytes. Proc. Natl Acad. Sci. USA 114, 5265–5270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeed, Y. et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci. Rep. 11, 8177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo, P. S. & Boriek, A. M. SIRT1 regulation in ageing and obesity. Mech. Ageing Dev. 188, 111249 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Altshuler-Keylin, S. et al. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab. 24, 402–419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, R. et al. Genetically prolonged beige fat in male mice confers long-lasting metabolic health. Nat. Commun. 14, 2731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. et al. Estrogen counteracts age-related decline in beige adipogenesis through the NAMPT-regulated ER stress response. Nat. Aging 4, 839–853 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry, D. C. et al. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 25, 481 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Chen, H. J., Meng, T., Gao, P. J. & Ruan, C. C. The role of brown adipose tissue dysfunction in the development of cardiovascular disease. Front. Endocrinol. 12, 652246 (2021).

    Article  Google Scholar 

  • Gilani, A., Stoll, L., Homan, E. A. & Lo, J. C. Adipose signals regulating distal organ health and disease. Diabetes 73, 169–177 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younossi, Z. M. Non-alcoholic fatty liver disease — a global public health perspective. J. Hepatol. 70, 531–544 (2019).

    Article  PubMed  Google Scholar 

  • Castera, L., Friedrich-Rust, M. & Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1264–1281.e4 (2019).

    Article  PubMed  Google Scholar 

  • Mantovani, A. et al. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 111S, 154170 (2020).

    Article  PubMed  Google Scholar 

  • Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ipsen, D. H., Lykkesfeldt, J. & Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 75, 3313–3327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassir, F. NAFLD: mechanisms, treatments, and biomarkers. Biomolecules 12, 824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saponaro, C. et al. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int. 42, 2418–2427 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Micu, E. S. et al. Systemic and adipose tissue inflammation in NASH: correlations with histopathological aspects. Rom. J. Morphol. Embryol. 62, 509–515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamuro, T. et al. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat. Commun. 11, 4150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzu, V., Vacca, M., Virtue, S., Allison, M. & Vidal-Puig, A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 158, 1899–1912 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Sanchez, C. et al. Therapeutic targeting of adipose tissue macrophages ameliorates liver fibrosis in non-alcoholic fatty liver disease. JHEP Rep. 5, 100830 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Boesch, M. et al. Adipose tissue macrophage dysfunction is associated with a breach of vascular integrity in NASH. J. Hepatol. 80, 397–408 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Donia, T. & Khamis, A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Env. Sci. Pollut. Res. Int. 28, 34121–34153 (2021).

    Article  CAS  Google Scholar 

  • Teixeira, T. M. et al. Activation of Nrf2-antioxidant signaling by 1,25-dihydroxycholecalciferol prevents leptin-induced oxidative stress and inflammation in human endothelial cells. J. Nutr. 147, 506–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. V. & Scherer, P. E. Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R. et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am. J. Physiol. Endocrinol. Metab. 293, E1703–E1708 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Dekker, J. M. et al. Prognostic value of adiponectin for cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 93, 1489–1496 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 121, 1347–1355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chui, P. C., Guan, H. P., Lehrke, M. & Lazar, M. A. PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J. Clin. Invest. 115, 2244–2256 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, A. F. et al. Biomedical consequences of elevated cholesterol-containing lipoproteins and apolipoproteins on cardiovascular and non-cardiovascular outcomes. Commun. Med. 3, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukama, T., Srour, B., Johnson, T., Katzke, V. & Kaaks, R. IGF-1 and risk of morbidity and mortality from cancer, cardiovascular diseases, and all causes in EPIC-Heidelberg. J. Clin. Endocrinol. Metab. 108, e1092–e1105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    Article  PubMed  Google Scholar 

  • O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlin, B. S. et al. The beta3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Invest. 130, 2319–2331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Berbee, J. F. et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Cypess, A. M. et al. Emerging debates and resolutions in brown adipose tissue research. Cell Metab. https://doi.org/10.1016/j.cmet.2024.11.002 (2024).

    Article  PubMed  Google Scholar 

  • Queiroz, M. & Sena, C. M. Perivascular adipose tissue in age-related vascular disease. Ageing Res. Rev. 59, 101040 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gong, H. et al. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol. Med. Rep. 10, 3296–3302 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Article  PubMed  Google Scholar 

  • Lee, D. J. W., Hodzic Kuerec, A. & Maier, A. B. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. Lancet Healthy Longev. 5, e152–e162 (2024).

    Article  PubMed  Google Scholar 

  • Houde, V. P. et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 1338–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, O., Rose, C. L., Webster, A. C. & Gill, J. S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19, 1411–1418 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan, T. et al. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. Diabetologia 59, 1995–2004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speakman, J. R. & Westerterp, K. R. Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am. J. Clin. Nutr. 92, 826–834 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Corrales, P. et al. Long-term caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell 18, e12948 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrales, P. et al. microRNAs-mediated regulation of insulin signaling in white adipose tissue during aging: role of caloric restriction. Aging Cell 22, e13919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, D. et al. Calorie-restriction-induced insulin sensitivity is mediated by adipose mTORC2 and not required for lifespan extension. Cell Rep. 29, 236–248.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnapaka, S., Malekzadeh, H., Tirmizi, Z. & Ejaz, A. Caloric restriction mitigates age-associated senescence characteristics in subcutaneous adipose tissue-derived stem cells. Aging 16, 7535–7552 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suchacki, K. J. et al. The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent. eLife 12, e88080 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda, S., Maier, G. & Villareal, D. T. Targeting energy intake and circadian biology to engage mechanisms of aging in older adults with obesity: calorie restriction and time-restricted eating. J. Gerontol. Ser. A 78, 79–85 (2023).

    Article  Google Scholar 

  • Foretz, M., Guigas, B. & Viollet, B. Metformin: update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 19, 460–476 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. P., Lorenzo, C. & Espinoza, S. E. Frailty attenuates the impact of metformin on reducing mortality in older adults with type 2 diabetes. J. Endocrinol. Diabetes Obes. 2, 1031 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Sundelin, E., Jensen, J. B., Jakobsen, S., Gormsen, L. C. & Jessen, N. Metformin biodistribution: a key to mechanisms of action? J. Clin. Endocrinol. Metab. 105, dgaa332 (2020).

    Article  PubMed  Google Scholar 

  • Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grycel, S. et al. Metformin treatment affects adipocytokine secretion and lipid composition in adipose tissues of diet-induced insulin-resistant rats. Nutrition 63-64, 126–133 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tokubuchi, I. et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS ONE 12, e0171293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63, 880–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Holst, J. J. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology 107, 1848–1855 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Kusminski, C. M. et al. Transforming obesity: the advancement of multi-receptor drugs. Cell 187, 3829–3853 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bossart, M. et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 34, 59–74.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Frias, J. P. et al. The sustained effects of a Dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 26, 343–352.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Davis, E. M. & Sandoval, D. A. Glucagon-like peptide-1: actions and influence on pancreatic hormone function. Compr. Physiol. 10, 577–595 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossat, A. M., Lilly, N., Kay, K. & Williams, D. L. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 31, 14453–14457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauck, M. A. et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol. 273, E981–E988 (1997).

    CAS  PubMed  Google Scholar 

  • Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Samms, R. J. et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Investig. 131, e146353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X. et al. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. Cell Metab. 37, 187–204.e7 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, A. D. et al. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep. Med. 3, 100813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samms, R. J. et al. Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. Mol. Metab. 64, 101550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ida, S. et al. Effects of antidiabetic drugs on muscle mass in type 2 diabetes mellitus. Curr. Diabetes Rev. 17, 293–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Cai, P., Zou, W. & Fu, Z. Psychiatric adverse events associated with GLP-1 receptor agonists: a real-world pharmacovigilance study based on the FDA adverse event reporting system database. Front. Endocrinol. 15, 1330936 (2024).

    Article  Google Scholar 

  • Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. eBioMedicine 36, 18–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohn, R. L., Gasek, N. S., Kuchel, G. A. & Xu, M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol. 33, 9–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, W., Yu, Z. & Han, J. J. Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators. Cell Metab. 36, 1126–1143.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2016).

    Article  CAS  PubMed  Google Scholar 

  • de Paula, F. J. A. & Rosen, C. J. Marrow adipocytes: origin, structure, and function. Annu. Rev. Physiol. 82, 461–484 (2020).

    Article  PubMed  Google Scholar 

  • Horowitz, M. C. et al. Bone marrow adipocytes. Adipocyte 6, 193–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Araujo, I. M. et al. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 21–30 (2017).

    Article  PubMed  Google Scholar 

  • Fazeli, P. K. et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight 6, e138636 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawthorn, W. P. et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20, 368–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z. et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 11, e78496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tratwal, J., Rojas-Sutterlin, S., Bataclan, C., Blum, S. & Naveiras, O. Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract. Res. Clin. Endocrinol. Metab. 35, 101564 (2021).

    Article  CAS  PubMed  Google Scholar