Date

August 25, 2025

Source

Nature

Categories

Haematopoietic ageing in health and lifespan
  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    PubMed  Google Scholar 

  • Cain, T. L., Derecka, M. & McKinney-Freeman, S. The role of the haematopoietic stem cell niche in development and ageing. Nat. Rev. Mol. Cell Biol. 26, 32–50 (2025).

    PubMed  CAS  Google Scholar 

  • Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014).

    PubMed  Google Scholar 

  • Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kasbekar, M., Mitchell, C. A., Proven, M. A. & Passegué, E. Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands. Cell Stem Cell 30, 1403–1420 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pomatto, L. C. D. & Davies, K. J. A. The role of declining adaptive homeostasis in ageing. J. Physiol. 595, 7275–7309 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, H. et al. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front. Immunol. 15, 1421062 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, Q. et al. Resilient anatomy and local plasticity of naive and stress haematopoiesis. Nature 627, 839–846 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ho, Y.-H. & Méndez-Ferrer, S. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica 105, 38–46 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Florian, M. C. Powerful microscopy reveals blood-cell production in bone marrow. Nature 627, 741–742 (2024).

    PubMed  CAS  Google Scholar 

  • Kovtonyuk, L. V. et al. IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood 139, 44–58 (2022).

    PubMed  CAS  Google Scholar 

  • Garcia-Garcia, A. et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133, 224–236 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Golan, K. et al. Daily onset of light and darkness differentially controls hematopoietic stem cell differentiation and maintenance. Cell Stem Cell 23, 572–585.e7 (2018).

    PubMed  CAS  Google Scholar 

  • Mejia-Ramirez, E. & Florian, M. C. Understanding intrinsic hematopoietic stem cell aging. Haematologica 105, 22–37 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Itokawa, N. et al. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat. Commun. 13, 2691 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Søraas, A. et al. Epigenetic age is a cell-intrinsic property in transplanted human hematopoietic cells. Aging Cell 18, e12897 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Kuribayashi, W. et al. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J. Exp. Med. 218, e20192283 (2020).

    PubMed Central  Google Scholar 

  • Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rube, C. E. et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE 6, e17487 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Yahata, T. et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2950 (2011).

    PubMed  CAS  Google Scholar 

  • Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beerman, I. & Rossi, D. J. Epigenetic control of stem cell potential during homeostasis, aging and disease. Cell Stem Cell 16, 613–625 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beerman, I. & Rossi, D. J. Epigenetic regulation of hematopoietic stem cell aging. Exp. Cell Res. 329, 192–199 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chambers, S. M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578–591 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Florian, M. C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grigoryan, A. et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 19, 189 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Florian, M. C. et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 16, e2003389 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Bogeska, R. et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 29, 1273–1284.e8 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grigoryan, A. et al. Attrition of X chromosome inactivation in aged hematopoietic stem cells. Stem Cell Rep. 16, 708–716 (2021).

    CAS  Google Scholar 

  • Rimmelé, P. et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16, 1164–1176 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Mohrin, M. et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Challen, G. A., Boles, N. C., Chambers, S. M. & Goodell, M. A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGFβ1. Cell Stem Cell 6, 265–278 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saçma, M. et al. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat. Cell Biol. 21, 1309–1320 (2019).

    PubMed  Google Scholar 

  • Hu, Y. et al. Multiscale footprints reveal the organization of cis-regulatory elements. Nature 638, 779–786 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Flohr Svendsen, A. et al. A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 138, 439–451 (2021).

    PubMed  CAS  Google Scholar 

  • Adelman, E. R. et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9, 1080–1101 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Keenan, C. R. et al. Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood 135, 2049–2058 (2020).

    PubMed  Google Scholar 

  • Sera, Y. et al. UTX maintains the functional integrity of the murine hematopoietic system by globally regulating aging-associated genes. Blood 137, 908–922 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khokhar, E. S. et al. Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. Exp. Hematol. 82, 43–52.e4 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, V. W. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167, 1310–1322 e17 (2016).

    PubMed  CAS  Google Scholar 

  • Wahlestedt, M. et al. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121, 4257–4264 (2013).

    PubMed  CAS  Google Scholar 

  • Wahlestedt, M. & Bryder, D. The slippery slope of hematopoietic stem cell aging. Exp. Hematol. 56, 1–6 (2017).

    PubMed  CAS  Google Scholar 

  • Rattigan, K. M., Zarou, M. M. & Helgason, G. V. Metabolism in stem cell-driven leukemia: parallels between hematopoiesis and immunity. Blood 141, 2553–2565 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song, Z. et al. An NAD+-dependent metabolic checkpoint regulates hematopoietic stem cell activation and aging. Nat. Aging 4, 1384–1393 (2024).

    PubMed  CAS  Google Scholar 

  • Leleu, X. et al. Anti-CD38 antibody therapy for patients with relapsed/refractory multiple myeloma: differential mechanisms of action and recent clinical trial outcomes. Ann. Hematol. 101, 2123–2137 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng, X. et al. A metabolic atlas of blood cells in young and aged mice identifies uridine as a metabolite to rejuvenate aged hematopoietic stem cells. Nat. Aging 4, 1477–1492 (2024).

    PubMed  CAS  Google Scholar 

  • Chua, B. A. & Signer, R. A. J. Hematopoietic stem cell regulation by the proteostasis network. Curr. Opin. Hematol. 27, 254–263 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Chua, B. A. et al. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 30, 460–472.e6 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dong, S. et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591, 117–123 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guidi, N. et al. Osteopontin attenuates aging‐associated phenotypes of hematopoietic stem cells. EMBO J. 36, 840–853 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Young, K. et al. Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 28, 1473–1482.e7 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dorshkind, K., Hofer, T., Montecino-Rodriguez, E., Pioli, P. D. & Rodewald, H. R. Do haematopoietic stem cells age? Nat. Rev. Immunol. 20, 196–202 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matteini, F., Mulaw, M. A. & Florian, M. C. Aging of the hematopoietic stem cell niche: new tools to answer an old question. Front. Immunol. 12, 738204 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tuljapurkar, S. R. et al. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging: fat, stem cells, cytokines and aging. J. Anat. 219, 574–581 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Farr, J. N. et al. Identification of senescent cells in the bone microenvironment. J. Bone Miner. Res. 31, 1920–1929 (2016).

    PubMed  CAS  Google Scholar 

  • Gao, X., Zhang, J. & Tamplin, O. J. The aging hematopoietic stem cell niche: a mini review. Front. Hematol. 4, 1525132 (2025).

    PubMed  PubMed Central  Google Scholar 

  • Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boueya, I. L., Sandhow, L., Albuquerque, J. R. P., Znaidi, R. & Passaro, D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 39, 8–24 (2025).

    PubMed  CAS  Google Scholar 

  • Ho, Y.-H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418.e6 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koh, B. I. et al. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir. Nature 636, 172–181 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li, Z. & MacDougald, O. A. Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101547 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pham, T. T. et al. Human bone marrow adipose tissue is a metabolically active and insulin-sensitive distinct fat depot. J. Clin. Endocrinol. Metab. 105, 2300–2310 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Marinelli Busilacchi, E., Morsia, E. & Poloni, A. Bone marrow adipose tissue. Cells 13, 724 (2024).

    PubMed  PubMed Central  Google Scholar 

  • Sarachakov, A. et al. Spatial mapping of human hematopoiesis at single-cell resolution reveals aging-associated topographic remodeling. Blood 142, 2282–2295 (2023).

    PubMed  CAS  Google Scholar 

  • Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal. Transduct. Target Ther. 8, 200 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    PubMed  CAS  Google Scholar 

  • World Health Organization. WHO Factsheet: Ageing and Health (2024).

  • Rodriguez, I. J. et al. Immunosenescence study of T cells: a systematic review. Front. Immunol. 11, 604591 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Soto-Heredero, G., Gómez De Las Heras, M. M., Escrig-Larena, J. I. & Mittelbrunn, M. Extremely differentiated T cell subsets contribute to tissue deterioration during aging. Annu. Rev. Immunol. 41, 181–205 (2023).

    PubMed  CAS  Google Scholar 

  • Baran-Gale, J. et al. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 9, e56221 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Avivi, I. et al. Depletion of B cells rejuvenates the peripheral B‐cell compartment but is insufficient to restore immune competence in aging. Aging Cell 18, e12959 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda Di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    PubMed  Google Scholar 

  • Morrisette-Thomas, V. et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech. Ageing Dev. 139, 49–57 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lima-Silva, M. L. et al. A nationwide study on immunosenescence biomarkers profile in older adults: ELSI-Brazil. Exp. Gerontol. 191, 112433 (2024).

    PubMed  CAS  Google Scholar 

  • Iske, J. et al. The impact of T-cell aging on alloimmunity and inflammaging. Transplantation 103, 634–642 (2023).

  • Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leins, H. et al. Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132, 565–576 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer, S., Albergante, L., Blackburn, C. C. & Newman, T. J. Thymic involution and rising disease incidence with age. Proc. Natl Acad. Sci. USA 115, 1883–1888 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, A. K. & McGuirk, J. P. Allogeneic stem cell transplantation: a historical and scientific overview. Cancer Res. 76, 6445–6451 (2016).

    PubMed  CAS  Google Scholar 

  • Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bera, S. & Loeffler, D. Cell polarity: cell type-specific regulators, common pathways, and polarized vesicle transport. Leukemia 39, 1558–1570 (2025).

    PubMed  Google Scholar 

  • Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    PubMed  CAS  Google Scholar 

  • Florian, M. C. & Geiger, H. Concise review: polarity in stem cells, disease, and aging. Stem Cells 28, 1623–1629 (2010).

    PubMed  Google Scholar 

  • Macara, I. G. & Mili, S. Polarity and differential inheritance—universal attributes of life? Cell 135, 801–812 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Etienne-Manneville, S. Cdc42—the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    PubMed  CAS  Google Scholar 

  • Atwood, S. X., Chabu, C., Penkert, R. R., Doe, C. Q. & Prehoda, K. E. Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6 aPKC. J. Cell Sci. 120, 3200–3206 (2007).

    PubMed  CAS  Google Scholar 

  • Chen, C. et al. Cdc42 inhibitor ML141 enhances G-CSF-induced hematopoietic stem and progenitor cell mobilization. Int. J. Hematol. 101, 5–12 (2014).

    PubMed  Google Scholar 

  • Amoah, A. et al. Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. Haematologica 107, 393–402 (2021).

    PubMed Central  Google Scholar 

  • Mejia-Ramirez, E., Geiger, H. & Florian, M. C. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum. Mol. Genet. 29, R248–R254 (2020).

    PubMed  CAS  Google Scholar 

  • Liu, W. et al. Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization. Leukemia 33, 749–761 (2019).

    PubMed  CAS  Google Scholar 

  • Florian, M. C. et al. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell 19, e13208 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dunn, W. G., McLoughlin, M. A. & Vassiliou, G. S. Clonal hematopoiesis and hematological malignancy. J. Clin. Invest. 134, e180065 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kapadia, C. D. et al. Clonal dynamics and somatic evolution of haematopoiesis in mouse. Nature 641, 681–689 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. Clonal hematopoiesis of indeterminant potential as a predictor of colorectal cancer risk: insights from the UK Biobank Cohort. Cancer Epidemiol. Biomarkers Prev. 34, 405–411 (2025).

    PubMed  CAS  Google Scholar 

  • Xi, Z. et al. Clonal hematopoiesis of indeterminate potential is a risk factor of gastric cancer: A Prospective Cohort in UK Biobank study. Transl. Oncol. 52, 102242 (2025).

    PubMed  CAS  Google Scholar 

  • Esai Selvan, M. et al. Clonal hematopoiesis of indeterminate potential in Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 31, 2123–2133 (2025).

    PubMed  Google Scholar 

  • Mohammed Ismail, W. et al. Single-cell multiomics reveal divergent effects of DNMT3A- and TET2-mutant clonal hematopoiesis in inflammatory response. Blood Adv. 9, 402–416 (2025).

    PubMed  CAS  Google Scholar 

  • Robertson, N. A. et al. Age-related clonal haemopoiesis is associated with increased epigenetic age. Curr. Biol. 29, R786–R787 (2019).

    PubMed  CAS  Google Scholar 

  • Nachun, D. et al. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell 20, e13366 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson, D. J. & Chandra, T. Epigenetic age prediction. Aging Cell 20, e13452 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jakobsen, N. A. et al. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 31, 1127–1144.e17 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Díez-Díez, M. et al. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat. Med. 30, 2857–2866 (2024).

    PubMed  PubMed Central  Google Scholar 

  • Liu, W. et al. Jak2 V617F clonal hematopoiesis promotes arterial thrombosis via platelet activation and cross talk. Blood 143, 1539–1550 (2024).

    PubMed  CAS  Google Scholar 

  • Sato, N. et al. CH-related mutant ASXL1 promotes atherosclerosis in mice via dysregulated innate immunity. Nat. Cardiovasc. Res. 3, 1568–1583 (2024).

    PubMed  CAS  Google Scholar 

  • Polizio, A. H. et al. Experimental TET2 clonal hematopoiesis predisposes to renal hypertension through an inflammasome-mediated mechanism. Circ. Res. 135, 933–950 (2024).

    PubMed  CAS  Google Scholar 

  • Zon, R. L. et al. JAK2-mutant clonal hematopoiesis is associated with venous thromboembolism. Blood 144, 2149–2154 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Evans, M. A., Sano, S. & Walsh, K. Cardiovascular disease, aging and clonal hematopoiesis. Annu. Rev. Pathol. 15, 419–438 (2020).

    PubMed  CAS  Google Scholar 

  • Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rauch, P. J. et al. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. Nat. Cardiovasc. Res. 2, 805–818 (2023).

    PubMed  CAS  Google Scholar 

  • Vlasschaert, C. et al. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Nat. Med. 30, 810–817 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marquez-Exposito, L. et al. Acute kidney injury is aggravated in aged mice by the exacerbation of proinflammatory processes. Front. Pharmacol. 12, 662020 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mccay, C. M., Pope, F. & Lunsford, W. Experimental prolongation of the life span. Bull. N. Y. Acad. Med. 32, 91–101 (1956).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Villeda, S. A. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med 20, 659–663 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bieri, G., Schroer, A. B. & Villeda, S. A. Blood-to-brain communication in aging and rejuvenation. Nat. Neurosci. 26, 379–393 (2023).

    PubMed  CAS  Google Scholar 

  • Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    PubMed  CAS  Google Scholar 

  • Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    PubMed  CAS  Google Scholar 

  • Kang, S., Moser, V. A., Svendsen, C. N. & Goodridge, H. S. Rejuvenating the blood and bone marrow to slow aging-associated cognitive decline and Alzheimer’s disease. Commun. Biol. 3, 69 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Lk, S. et al. The aged hematopoietic system promotes hippocampal-dependent cognitive decline. Aging Cell 19, e13192 (2020).

    Google Scholar 

  • Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, S. et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 29, 990–1005.e10 (2022).

    PubMed  CAS  Google Scholar 

  • Jeon, O. H. et al. Systemic induction of senescence in young mice after single heterochronic blood exchange. Nat. Metab. 4, 995–1006 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hosseini, L. et al. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. Naunyn Schmiedebergs Arch. Pharm. 397, 1–13 (2023).

    Google Scholar 

  • Edgren, G. et al. Association of donor age and sex with survival of patients receiving transfusions. JAMA Intern. Med. 177, 854–860 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Ho, T. T. et al. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J. Exp. Med. 218, e20210223 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Di Francesco, A. et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634, 634–692 (2024).

    Google Scholar 

  • Montserrat-Vazquez, S. et al. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. npj Regen. Med. 7, 78 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Abbott, A. Hacking the immune system could slow ageing—here’s how. Nature 629, 276–278 (2024).

    PubMed  CAS  Google Scholar 

  • Matteini, F., Montserrat-Vazquez, S. & Florian, M. C. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett. 598, 2776–2787 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    PubMed  CAS  Google Scholar 

  • Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences and reversal of immune system aging. J. Clin. Invest. 123, 958–965 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    PubMed  CAS  Google Scholar 

  • Säwen, P. et al. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. eLife 7, e41258 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Montecino-Rodriguez, E. et al. Lymphoid-biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Rep. 12, 584–596 (2019).

    CAS  Google Scholar 

  • Chang, V. Y. et al. Epidermal growth factor augments the self-renewal capacity of aged hematopoietic stem cells. iScience 27, 110306 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wendorff, A. A. et al. Epigenetic reversal of hematopoietic stem cell aging in Phf6-knockout mice. Nat. Aging 2, 1008–1023 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Su, T.-Y. et al. Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. Nat. Commun. 15, 7966 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Aksöz, M. et al. Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved. Sci. Immunol. 9, eadk3469 (2024).

    PubMed  Google Scholar 

  • Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Muller-Sieburg, C. E., Cho, R. H., Karlsson, L., Huang, J.-F. & Sieburg, H. B. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103, 4111–4118 (2004).

    PubMed  CAS  Google Scholar 

  • Sieburg, H. B. et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107, 2311–2316 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park, M. D. et al. Hematopoietic aging promotes cancer by fueling IL-1α-driven emergency myelopoiesis. Science 386, eadn0327 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jang, G. et al. Stem cell decoupling underlies impaired lymphoid development during aging. Proc. Natl Acad. Sci. USA 120, e2302019120 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, A., Chia, J. J., Rao, D. S. & Hoffmann, A. Population dynamics modeling reveals that myeloid bias involves both HSC differentiation and progenitor proliferation biases. Blood 145, 1293–1308 (2025).

    PubMed  CAS  Google Scholar 

  • Carrelha, J. et al. Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells. Nat. Immunol. 25, 1007–1019 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Poscablo, D. M. et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell 187, 3090–3107.e21 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Konstorum, A. et al. Platelet response to influenza vaccination reflects effects of aging. Aging Cell 22, e13749 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Adu-Berchie, K., Obuseh, F. O. & Mooney, D. J. T cell development and function. Rejuvenation Res. 26, 126–138 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, L., Brown, R., Chen, S., Zhuge, Q. & Su, D.-M. Aging induced decline in T-lymphopoiesis is primarily dependent on status of progenitor niches in the bone marrow and thymus. Aging 4, 606–619 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Min, D. et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529–2537 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coles, A. J. et al. Keratinocyte growth factor impairs human thymic recovery from lymphopenia. JCI Insight 4, e125377 (2019).

    PubMed Central  Google Scholar 

  • Lopes, N., Vachon, H., Marie, J. & Irla, M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol. Med. 9, 835–851 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Santamaria, J. C. et al. RANKL treatment restores thymic function and improves T cell-mediated immune responses in aged mice. Sci. Transl. Med. 16, eadp3171 (2024).

    PubMed  CAS  Google Scholar 

  • Gardner, J. K., Mamotte, C. D. S., Jackaman, C. & Nelson, D. J. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res. Rev. 38, 40–51 (2017).

    PubMed  CAS  Google Scholar 

  • Wong, C. & Goldstein, D. R. Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol. 25, 535–541 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhivaki, D. et al. Correction of age-associated defects in dendritic cells enables CD4+ T cells to eradicate tumors. Cell 187, 3888–3903.e18 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Keren, Z. et al. B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood 117, 3104–3112 (2011).

    PubMed  CAS  Google Scholar 

  • Vlasschaert, C., Lanktree, M. B., Rauh, M. J., Kelly, T. N. & Natarajan, P. Clonal haematopoiesis, ageing and kidney disease. Nat. Rev. Nephrol. 20, 161–174 (2024).

    PubMed  Google Scholar